

볼스크류 Ballscrews

PMI 볼스크류의 특성

높은 신뢰성

PMI 는 생산 관리에 있어서 수 년간 경험을 축적하였습니다. 이러한 경험은 수주에서 설계, 원자재 수급, 가공, 열 처리, 연마, 조립, 검사, 포장 및 납기에 이르기까지 생산의 전 과정에 해 당됩니다. 체계화된 관리로 **PMI** 볼스크류의 높은 신뢰성을 보장합니다.

높은 정밀도

PMI 볼스크류는 20℃ 의 일정 온도에서 가공, 연마, 조립, 품질검사를 통해 볼스크류의 높은 정밀성을 보장합니다.

정도 등급 C5급 이상일 경우,연삭급 볼스크류는 정도 점검하여 성적서를 동봉하여 출하 한다.

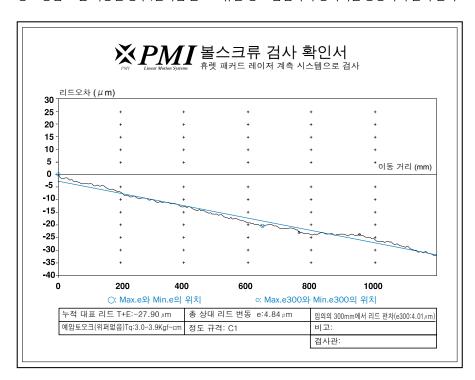


그림1. 정밀도 검사 확인서

긴 내구성

PMI 볼스크류는 긴 내구성을 보장하기 위해 적절히 표면 경화되고 고강성을 위해 담금질 (quenching)과 뜨임(tempering) 열처리된 독일 합금강으로 만들어집니다.

높은 구동 효율

PMI 볼은 높은 구동 효율을 제공하기 위해 볼스크류 안에서 회전합니다. 너트와 스크류 사이에 마찰 미끄럼 운동을 하는 전통적인 ACME 스크류와 비교해보면, 볼스크류는 단지 3분의 1의 운전 토오크가 필요합니다. 따라서 직선운동을 회전운동으로 변환시키는 것이 용이합니다.

백래쉬 제로와 고 강성

고딕 형상이 *PMI* 볼스크류에 적용됩니다. 이것은 볼과 홈 사이에 최상의 접촉을 제공합니다. 볼너트와 스크류 사이에 공차를 제거하고 탄성 변형을 줄이기 위해 이와 같이 적절한 예압이 볼스크류에 가해진다면 볼스크류는 훨씬 더 좋은 강성과 정도를 얻습니다.

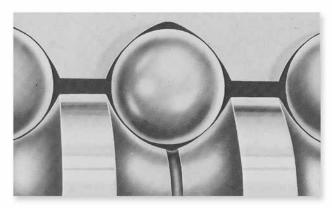


그림2. 고딕 아치형 나사

리드 정도 및 토오크

리드 정도

PMI 의 정밀 연삭 볼스크류는 JIS B 1192와 일치하여 생산됩니다. 허용 수치와 각 부분에 대한 정의는 아래와 같습니다.

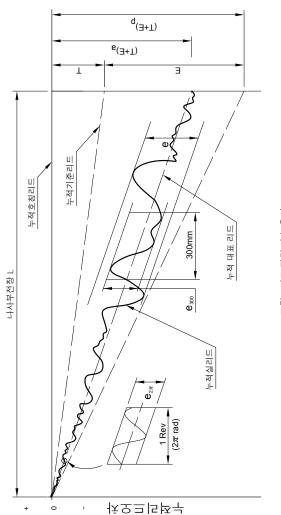


그림3. 리드 관련 기술 용어

표1용어설명	
T+E	누적대표리드. 누적실리드의 경향을 대표하는 직선. 이것은 최소자승법으로 얻어지고 레이저 시스템에 의해 측정.
ď	허용값.
ø	실제 값.
Т	지정 이동. 이 값은 다양한 적용 요구에 따라 고객과 제조사에 의해 결정.
В	누적대표리드오차. 누적기준리드의 허용오차. 정도와 유효 나사부 길이에 의해 결정
u	총 상대리드변동 이동 거리에 대한 변동의 최대폭.
e 300	임의의 300 mm 에서 리드오차.
6 _{2n}	임의의 1회전, <i>2π</i> rad에서 리드오차.

표2 누적대표리드오차 (±E) 와 총 상대변동(e)

단위	:	μт
----	---	----

	정도	등급	C	0	C	1	C	2	c	3	C	4	C	5
	초과	이하	E	e	E	e	E	e	E	e	E	e	E	e
	-	315	4	3.5	6	5	8	7	12	8	12	12	23	18
	315	400	5	3.5	7	5	9	7	13	10	14	12	25	20
	400	500	6	4	8	5	10	7	15	10	16	12	27	20
	500	630	6	4	9	6	11	8	16	12	18	14	30	23
유효	630	800	7	5	10	7	13	9	18	13	20	14	35	25
유효 나사부의 길이	800	1000	8	6	11	8	15	10	21	15	22	16	40	27
의 길 이 (mm)	1000	1250	9	6	13	9	18	11	24	16	25	18	46	30
(mm)	1250	1600	11	7	15	10	21	13	29	18	29	20	54	35
	1600	2000	-	-	18	11	25	15	35	21	35	22	65	40
	2000	2500	-	-	22	13	30	18	41	24	41	25	77	46
	2500	3150	-	-	26	15	36	21	50	29	50	29	93	54
	3150	4000	-	-	32	18	44	25	60	35	62	35	115	65
	4000	5000	-	-	-	-	52	30	72	41	76	41	140	77
	5000	6300	-	-	-	-	65	36	90	50	95	50	170	93
	6300	8000	-	-	-	-	-	-	110	62	120	62	210	115
	8000	10000	-	-	-	-	-	-	137	75	157	75	260	140

표3 정도 규격

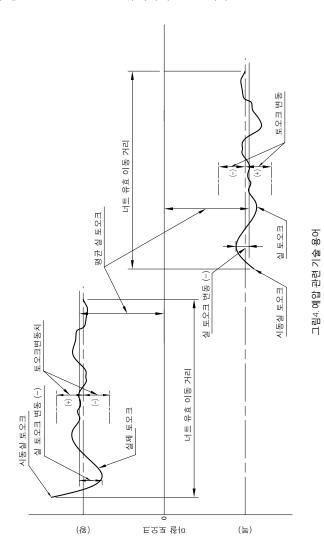
임의의 $300mm(\mathbf{e}_{300})$ 에서의 변동 및 흔들림 $(\mathbf{e}_{2\pi})$

e ₃₀₀					난위	: μι

정도 등급	CO	C1	C2	C3	C4	C 5	C6	C 7	C10
JIS	3.5	5	-	8	-	18	-	50	210
ISO	3.5	6	-	12	-	23	-	52	210
DIN	-	6	-	12	-	23	-	52	210
PMI	3.5	5	7	8	12	18	25	50	210

단위 : *μm* $e_{2\pi}$

정도 등급	C0	C1	C2	C 3	C4	C5
JIS	3	4	-	6	-	8
ISO	3	4	-	6	-	8
DIN	-	4	-	6	-	8
PMI	3	4	4	6	8	8


표4 볼스크류 정도등급 및 적용

	용도	축				7	정도등급	}			
	ᅙᄑ	4	C0	C 1	C2	C3	C4	C 5	C6	C 7	C10
	선반	Х	•	•	•	•	•	•			
		Z				•	•	•			
	종합절단중심	X,Y		•	•	•	•	•			
	장비	Z			•	•	•	•			
	드리셔비	X,Y				•	•	•			
	드릴선반	Z						•	•	•	
	평면연마선반	X,Y		•	•	•	•	•			
	정한인마신한	Z			•	•	•	•			
N	TITTMH	X,Y	•	•							
C	지그교정선반	Z	•	•							
공 작	이버어티니바	X,Y	•	•	•						
기	외부연마선반	Z		•	•	•					
		X,Y		•	•	•					
	방전가공장비	Z			•	•	•	•			
	방전가공전단	X,Y		•	•	•					
	장비	Z		•	•	•	•				
	절단장비	X,Y				•	•	•			
	레이저절단장	X,Y				•	•	•			
	⊎l	z				•	•	•			
	목공가공장	합비						•	•	•	•
일	!반 장비;전문용?	장비				•	•	•	•	•	•

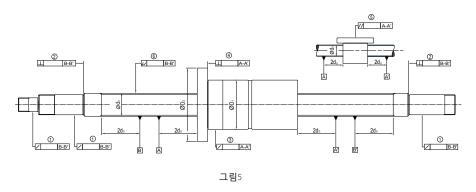
	용도	축				7	정도등급	}			
	ᅙᄑ	4	CO	C 1	C2	C3	C4	C5	C6	C 7	C10
	직교좌표	조립부 품기타			•	•	•	•	•	•	
공 업		기타						•	•	•	•
용 장	수직간편형식	조립부 품기타				•	•	•	•	•	
비		기타						•	•	•	
	원기둥 죄	·표				•	•	•	•	•	
반	노출장비		•	•							
도	화학처리장	라비				•	•	•	•	•	•
체 제	용접리드	기		•	•						
조	용접장비	II	•	•	•						
설 비	탐침측정정	함비		•	•	•	•	•			
_'	인쇄회로판드	릴장비			•	•	•	•			
	3차원측정장비	I	•	•	•						
	사무실장비							•	•	•	•
	영상처리장비		•	•							
	플라스틱사출장	.Al								•	•
	강철설비장비									•	•
핵 발	제어봉					•	•	•	•	•	
크 전 	완충장치	4								•	•
	항공기					•	•	•			

예압 토오크

볼스크류의 예압 토오크는 JIS B 1192에 따라서 생산됩니다.

쩅다	예압의 목적은 축방향공차를 제거하여 볼스크류의 강성을 증가시키는 것[A1-42]참조.
예압 토오크	다른 하중 없이 예압만으로 볼스크류를 계속 회전시키는 데 필요한 토오크.
기준 토오크	목표치 예압 토오크.
年 2 3 世名	예압 토오크의 목표치로부터의 변동. 기준 토오크에 대하여 +,- 값으로 정의됨.
年 8 日 日 日 日 日 日 日 日 日 日	기준 토오크와 토오크 변동 사이의 비율.
실토오크	볼스크류의 실제 값을 사용하여 측정되는 변동예압토오크.
평균 실 토오크	유효 나사부 길이에서 최대 실 토오크와 최소 실 토오크를 측정하여 얻어진 평균값.
실제 토오크 변 동율	유효 나사부 길이에서 최대 변동 값을 나타내는 실제 측정값.
실제 토오크 변 동율	평균 실제 토오크와 실제 토오크 변동 사이의 비율.

표5 예압 토오크의 허용 범위

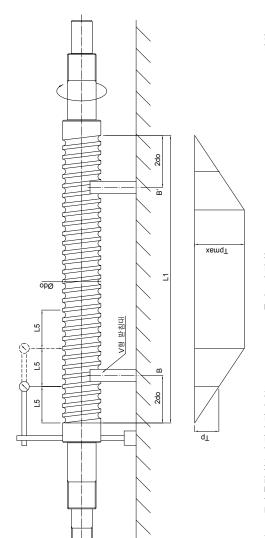

						유효 나	사부 길	0 (<i>mm</i>)				
기준	토오크				4000	이하				4000 0	상 100	00 이하
(kgf	cm)	Slend	erness I	Ratio: 40	이하	Slend	erness l	Ratio: 60	이이하			
			정	도			정	도			정도	
초과	이하	C0	C 1	C3	C5	C0	C 1	C3	C5	C 1	C3	C5
2	4	±30%	±35%	±40%	±50%	±40%	±40%	±50%	±60%	-	-	-
4	6	±25%	±30%	±35%	±40%	±35%	±35%	±40%	±45%	-	-	-
6	10	±20%	±25%	±30%	±35%	±30%	±30%	±35%	±40%	-	±40%	±45%
10	25	±15%	±20%	±25%	±30%	±25%	±25%	±30%	±35%	-	±35%	±40%
25	63	±10%	±15%	±20%	±25%	±20%	±20%	±25%	±30%	-	±30%	±35%
63	100	-	±15%	±15%	±20%	-	-	±20%	±25%	-	±25%	±30%

유의: 세장비 :유효나사길이/스크류노말직경

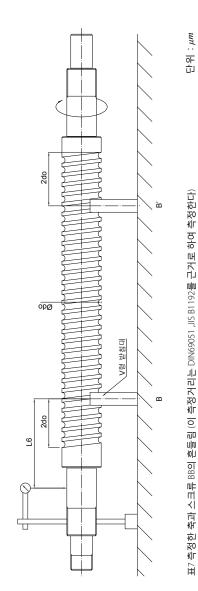
기준 토오크

$$T_P = 0.05 \left(tan \beta \right)^{0.5} \times \frac{Fao \times l}{2\pi}$$
(1)
여기서
 T_P 기준 토오크 $\left(kgf \cdot cm \right)$ l 리드 $\left(cm \right)$
Fao 예압 $\left(kgf \right)$ β 리드각

PMI 볼스크류 각 부분의 공차



위 그림은 PMI 볼스크류의 여러 부분의 공차정밀도의 예입니다.


PMI 볼스크류의 여러 부분에 대한 정도는 아래의 항목을 측정해야 합니다:

- 1. B-B' 에서 나사축가 지지되는 부분의 원주의 동심도.
- 2. B-B'에서 나사축가 지지되는 부분의 직각도.
- 3. A-A' 에서 너트 원주의 동심도.
- 4. A-A' 에서플랜지 취부면의 직각도.
- 5. A-A' 에서 너트 원주간 평행도.
- 6. A-A' 에서 전체 동심도.
- 유의: 볼스크류의 표면은 JIS B1192(1997년 제정)에 규정된 정밀도에 따라 연마됩니다.

정도검사표준

ᅦ	볼스크류 흔들림 치숙	흔들림 치수 측정(측정거리는 DN69051,JISB1192 근거로 측정 함)	N69051,JIS	81192 근거	교 기 교	£.					단위 : μm
어	외경 do(mm)	측정기준 길이 L_5				PMI	PMI정도등급 Tpmax	Тртах			
百	이하(포함)	٠	8	ū	g	ຶ	C4	CS	9) (C2	C10
۰	12	80									
7	25	160									
5	20	315	20	20	20	23	25	28	32	40	80
0	100	630									
8	200	1250									
	총 길이 비례 L _I /do(mm)	L _I /do(mm)				PMI &	<i>PMI</i> 정도등급 <i>(L1≥4L5)</i>	.1≥4L5)			
	삼과	이하(포함)	8	Ü	g	ຶ	C4	CS	9) (C2	C10
		40	40	40	40	45	50	09	2	80	160
	40	09	09	09	09	70	75	85	96	120	240
	09	80	100	100	100	115	125	140	160	200	400
	80	100	160	160	160	180	200	220	256	320	640

þ	오경 do(mm)	측정기준길이 L_r				PMI	PMI 정도등급 $(L6 \le Lr)$	L6≤Lr)			
추과	이하(포함)	,	00	Cl	2	ຶ	C4	CS	9)	C7	
9	20	80	9	8	10	=	12	16	20	40	
20	20	125	8	10	12	14	16	20	25	20	
20	125	200	10	12	16	18	20	26	32	63	
125	200	315	-	-	-	20	25	32	40	80	

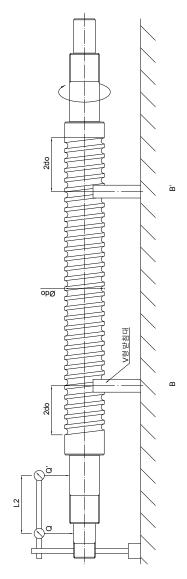


표8 볼스크 구동 측과 베어링측의 동심도(측정은 DIN 69051,JIS B1192 에 근거하여 측정함) (Q와 🤾 차이의 최대값)

만위 : mm

þ	<mark>원</mark> 원	기본길이측정 $L_{ m r}$				PMI?	PMI 정도등급 ℓl	.2≤Lr)			
사 나	이하(포함)	,	00	Cl	C2	ß	C4	S	9)	7.7	C10
9	20	80	4	5	5	9	9	7	8	12	16
20	20	125	5	9	9	7	8	6	10	16	20
20	125	200	9	7	8	6	10	11	12	20	25
125	200	315	-	-	-	10	12	14	16	25	32

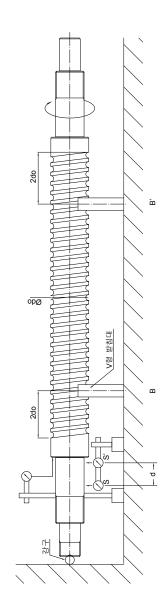
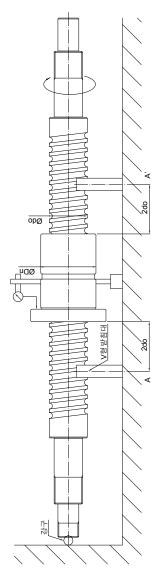
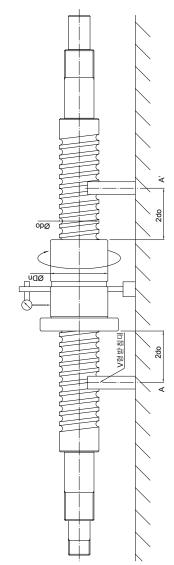
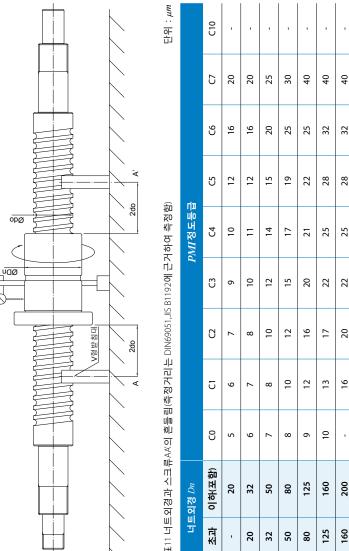
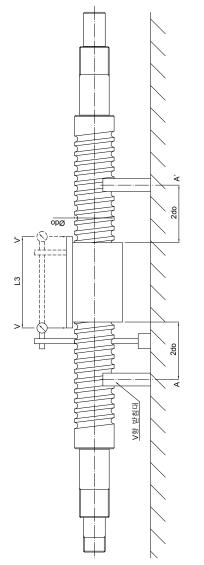



표9 볼스크류 구동측과 베어링의 수직 각도(측정거리는 DIN 69051, JIS B1192 근거하여 측정함) (측면의 흔들림값 R은 지지대 양측의 흔들림값 S와 S'차이 값)


단위 : μm

ø	요경 do(mm)				Р	PMI정도등급	da			
서 년	이하(포함)	8	Cl	2	ຶ	C4	CS	9)	C7	C10
9	63	3	3	3	4	4	5	5	9	10
63	125	3	4	4	5	5	9	9	8	12
125	200	ı	ı	,	9	9	8	8	10	16


<u></u> 돈0
КIL
ਲੁ
구
디
눔
92(
B11
JIS E
51,
9
Ž
급
ㅈ
Ϋ́O
<u>두</u>)날
갻
ΚL
仆
힛
₹
啃
A I
넊
피
可且
본
ය
HIN
삪
) -
<u>—</u>


표10 너트	표10 너트플랜지조립면과 스크류 AA'의 수직각도(측정거리는 DIN69051,JIS B1192에 근거하여 측정함)	과 스크류 ^^	'의 수직각도	(측정거리는	DIN69051,JIS	B1192에 근거	하여 측정함			단위 : #m
7	너트외경 D_n				I	PMI정도등급	da			
섞	이하(포함)	OO	C1	2	ß	C4	S	9)	72	C10
	20	5	9	7	8	6	10	12	14	
70	32	5	9	7	8	6	10	12	14	
32	20	9	7	8	8	10	11	15	18	,
20	80	7	8	6	10	12	13	16	18	
80	125	7	6	10	12	14	15	18	20	
125	160	8	10	11	13	15	17	19	20	
160	200	-	11	12	14	16	18	22	25	,
200	250		12	14	15	18	20	25	30	1

100
坚0
КIГ
호
후
ㅈ
ЦΊ
ᇹ
92(
- 5
В
\leq
-1,
6
9
\leq
ᄖ
교
Ļ
<u> </u> 돈0
(小 公
ᇜ
u n
П П П П
01
≯
πÈ
Щ
Κİ
卢
ਨ0
어
Шİ
Ŧ
=
Ħ

너트요	뉴		20	32	20	80	125	160	200
너트외경 Dn	이하(포함)	20	32	20	80	125	160	200	250
	CO	5	9	7	8	6	10	1	-
	C1	9	7	8	10	12	13	16	17
	S	7	8	10	12	16	17	20	20
, I	ß	6	10	12	15	20	22	22	22
PMI정도등급	C4	10	11	14	17	21	25	25	25
dn	CS	12	12	15	19	22	28	28	28
	9)	16	16	20	25	25	32	32	32
	C7	20	20	25	30	40	40	40	40
	C10	ı		,	,	ı	ı	-	,

표12 너트	표12 너트외경과 스크류AA'의	10J	』(V-V')(측정거	:들림(V-V)(측정거리는 DIN 69051,JIS B1192에 근거하여 ·	51,JIS B1192 0	근거하여 =	사 하 하			단위 : μm
너트기름	준평면길이 L3				P	PMI정도등급	da			
석	이하(포함)	CO	Cl	7	Θ	C4	S	9)	C2	C10
	20	2	9	7	8	6	10	14	17	
20	100	9	7	8	10	11	12	15	17	
100	200		10	11	13	15	17	24	30	

나사축 설계

나사축의 생산 가능 길이

가능한 연삭 볼스크류의 생산 가능한 길이

나사축 외경이 4 mm, 인 경우 볼스크류의 생산 가능한 길이는 150 mm. 나사축 외경이 120 mm, 인 경우 볼스크류의 생산 가능한 길이는 10000 mm. 유의: 매우 높은 dm.n 치가 필요한 경우는 당사 판매처에 문의하십시오.

전조 볼스크류의 생산 가능한 길이

나사축 외경이 8 mm, 인 경우 볼스크류의 생산 가능한 길이는 1000 mm. 나사축 외경이 80 mm, 인 경우 볼스크류의 생산 가능한 길이는 6000 mm.

취부방법

허용 축방향 하중 및 허용 회전 속도는 나사축 장착법에 따라 다양하므로, 운전 조건에 따라 장착법을 결정해야 합니다.

그림6에서8까지는 나사축의 일반적인 장착법이 설명되어 있습니다.

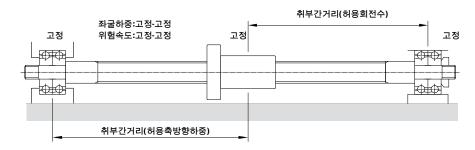


그림6. 장착법: 고정-고정

그림7. 장착법: 고정-지지

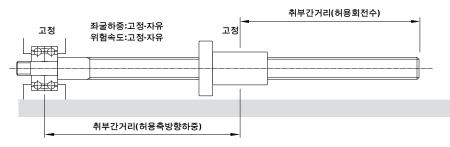


그림8. 장착법: 고정-자유

허용 축방향 하중

좌굴 하중

사용할 볼스크류는 축방향으로 적용되는 최대 압축 하중 하에서 휘어져서는 안됩니다. 좌굴 하중은(2)식을 사용하여 계산할 수 있습니다

$$P = \alpha \frac{\pi^2 NEI}{L^2} = m \frac{dr^4}{L^2} \times 10^3 (kgf) \dots (2)$$

여기서:

- α 안전계수 (α=0.5)
- E 영률 ($E=2.1\times10^4 kgf/mm^2$)
- I 나사축 횡단면의 최소 단면 2차 모멘트 ($I=\pi dr^4/64 \ mm^4$)
- dr 나사축 나사부 골지름 (mm)
- L 장착 위치간의 거리 (mm)
- m、N 취부방법에 의한계수

지지-지지 m=5.1 (N=1)

고정-지지 *m*=10.2 (*N*=2)

고정-고정 *m*=20.3 (*N*=4)

고정-자유 m=1.3 (N=1/4)

나사축의 허용인장압축하중

축방향 하중이 볼스크류에 가해지는 곳에 사용할 나사축는 나사축의 항복 응력을 발휘할 수 있는 허용인장압축하중을 고려하여 결정해야 합니다.

· 허용인장압축하중은(3)식을 사용하여 계산할 수 있습니다.

$$P = \sigma \cdot A = \sigma \cdot \pi \cdot dr^2/4$$
 ·····(3)

여기서

- σ 허용인장압축하중 (147MPa)
- *A* 허용인장압축응력 (*mm*²)
- dr 나사축 나사부 골지름 (mm)

• 나사홈의 허용 하중

최대 축 하중은 볼스크류 기본 정격하중치 보다는 작아야 합니다. 상세한 설명은[A1-56]장 나사홈 허용 하중 내용을 참고바랍니다.

도면 상의 값 표기 (볼스크류 외경-리드)

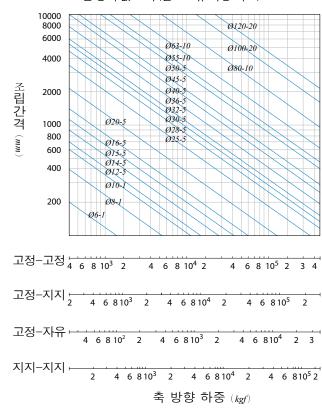


그림9. 허용축 방향 하중 도표

허용 회전 속도

위험 회전 속도

구동 모터의 회전 속도가 피드(feed) 시스템(주로 볼스크류)의 고유 진동수와 일치하면 진동 공진이 발생합니다. 이러한 회전 속도를 임계 회전 속도라고 합니다. 임계 회전 속도는 공작물에 물결 모양의 표면 때문에 가공의 품질을 떨어뜨립니다. 또한 기계의 파손을 일으킬 수도 있습니다. 따라서 진동 공진이 일어나지 않도록 예방하는 것이 매우 중요합니다. 임계 회전 속도의 80%를 허용 속도로 선정합니다. 이에 대해서는(4)식에 나타나 있습니다.

볼스크류의 고유 진동수를 높여 허용 회전 속도를 높이려면, 지지물을 지탱하는 엔드 사이에 추가적인 지지물이 필요할 수 있습니다.

$$n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{EIg}{\gamma A}} = f \frac{dr}{L^2} \times 10^7 (rpm) \dots (4)$$

여기서

n 허용 회전 속도 (*rpm*)

α 안전 계수 (α=0.8)

E 영률 ($E=2.1\times10^4 kgf/mm^2$)

I 나사축 횡단면의 최소 단면 2차 모멘트($I=\pi dr^4/64 \ mm^4$)

dr 나사축 나사 골지름 (mm)

A Screw shaft cross-sectional area $(A=\pi dr^2/4 mm^2)$

L 장착 위치간의 거리(mm)

g 중력 가속도 $(g=9.8\times10^3 \text{ mm/s}^2)$

 γ 비중 ($\gamma=7.8\times10^{-6}\ kgf/mm^3$)

f λ 취부법에 따른 계수

지지-지지 f=9.7 ($\lambda=\pi$)

고정-지지 f=15.1 ($\lambda=3.927$)

고정-고정 f=21.9 ($\lambda=4.730$)

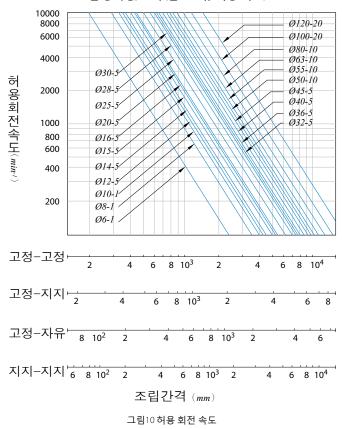
고정-자유 f=3.4 ($\lambda=1.875$)

볼스크류의dm.n치

dm 은 나사축의 볼중심경, n은 최대 회전 속도입니다. dm.n 값은 소음과 기온 상승, 작동 수명, 볼 순환과 연관이 있으며 동시에 이것들에 영향을 미칩니다. 일반적으로 dm.n 치는 다음과 같이 제한됩니다. (유의1 참조)

전조 볼스크류	허용 <i>dm.n</i> 값	허용최고회전속도(min ⁻¹)
표준(일반리드)	≤50000	1500~2000
고속(하이리드)	≤70000	2000~2500

	제품구분	허용 <i>d</i>	m.n 大	최고회전수(표준)
	세품구군	표준	고속	[min ⁻¹]
	순환형식	≤70000		2000
	엔드 디플렉터형식	≤220000		3000
74.01	튜브형식	≤80000		2500
정밀 볼스크류	E형 순환식	≤130000,≤140000 ¹		3000
2-411	고하중형식	≤130000	≤160000 ²	3000
	고하중디플렉터형식		≤120000	2500
	엔드 캡순환형식	≤120000		2500


유의: 1.에서는dm.n값은 130000 이며 특별한 상황(고정)일때는 dm.n 값이 140000 될 수 있습니다.

2.리드10mm, 12mm, 14mm, 16mm 일때는dm.n값은≤120000. 리드20mm,25mm 는, dm.n 값이≤160000.

3.dm.n치는 참고로만 사용합니다. 실제로 dm.n 치는 엔드 지지 방식과 그 사이의 거리로 결정됩니다.

4.매우 큰dm.n치가 필요한 경우, 판매처에 문의하십시오.현재는 더 나은 제조 기술로 dm.n 치가 상기에서처럼 한정적이지 않고, 100,000보다 더큽니다. (유의2 참조)

도면 상의 값 표기 (볼스크류 외경-리드)

나사축 설계의 유의사항

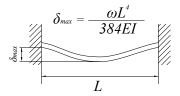
완전한 엔드 나사

내부 볼 순환 볼너트가 있는 볼스크류의 경우, 나사축의 볼너트 부품에 볼스크류의 엔드에 완전 나사부가 있는 엔드가 최소 한 개가 필요합니다. 완전한 엔드 나사가 불가능하다면 최소한 쪽 엔드에 완전 나사부가 있어야 하며, 저널(journal) 부위의 직경은 골밑(thread root) 부위의 직경보다 0.2mm 작아야 합니다.

그림11. 완전하지 않은 엔드 나사

그림12. 완전한 엔드 나사

볼너트 부위와 볼스크류의 엔드 부위의 기계 설계


기계 설계시, 기계에 볼스크류 조립의 공간이 충분한지 확인하는 것은 매우 중요합니다. 어떤 경우에는 조립의 공간이 충분하지 않아서 나사축에서 볼너트를 분해해야 합니다. 이렇게 하면, 볼이 볼너트에서 빠지거나 볼너트 직각도 혹은 마무리의 정밀도가 떨어지거나 예압이 변하거나 외부 볼 순환 튜브가 파손되는 등 여러 가지 문제를 일으킬 수 있습니다. 더 심각한 경우에는 볼스크류가 파손되어 사용하지 못하게 될 수도 있습니다. 상기와 같이 분해가 필요하면 당사에 문의하십시오.

유효 경화가 일어나지 않는 부위

나사축의 나사부는 고주파 경화에 의해 단단해집니다. 이때, 나사부의 양쪽 엔드의 15mm 정도는 충분히 단단하지 않습니다. 유효 나사부 이동거리를 위해서는 기계 설계 시 주의를 요합니다.

긴 볼스크류를 위한 여분의 지지 장치

긴 볼스크류는 자체 중량 때문에 구부러질 수 있습니다. 이 때문에 볼스크류에 가해지는 반경 반향 하중이 일어나고, 회전하는 동안 반경 방향 진동도 더 심해질 수 있습니다. 이런 문제를 막으려면 양 끝의 기존 지지물 중간에 여분의 지지물이 필요합니다. 지지물에는 두 가지 형태 가 있습니다. 볼너트를 따라 이동하는 이동식과 고정된 위치에 설치하는 고정식입니다. 이동 하는 동안 이 지지물과 부딪치지 않도록 테이블을 알맞게 설계해야 합니다.

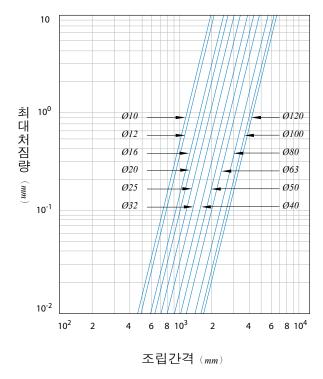
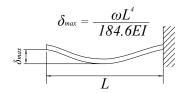



그림13. 자중처짐량

고정-지지

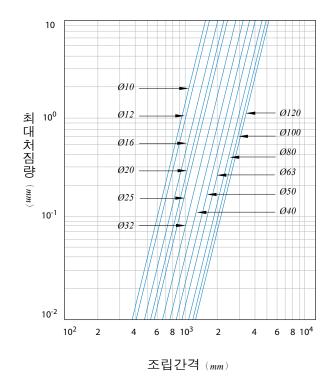


그림14. 자중처짐량

볼너트의 설계

너트 타입의 선정

타입

너트의 타입 선택 시 치수 (너트의 길이, 내경, 외경), 예압, 납기의 정확도를 고려하십시오.

순환

외부 볼 순환

- · 긴 볼순환, 저소음
- 원활한 볼 구동.
- 대 리드와 큰 외경에 대해 뛰어난 성능과 다양한 솔루션을 제공합니다.

내부 볼 순환

- 기계의 제한된 공간에 유리.
- •짧은 리드나 작은 내경에 더 좋은 구조.

유효 회전

유효 회전을 선택하려면 운동, 수명 및 강성을 고려해야 합니다. **표13**을 참조하십시오.

플랜지

PMI 는 세 가지 표준 타입(A형, B형, C형)이 있습니다. 너트 설치 시 주위 공간을 고려하여 선택하시기 바랍니다. PMI 는 고객이 요청하면 특수 플랜지를 제작할 수 있습니다.

오일 홀

표준 너트에는 오일 홀이 있습니다. 제작 시 도표의 치수를 확인하십시오.

표13 유효 회전의 특성

특성	외부 볼 순환	내부 볼 순환
운동	1.5서킷×2로우、1.5서킷×3로우、2.5서킷×1로우	1서킷×3로우
正石	13ペグ82年午、13ペグ83年午、23ペグ81年午	1서킷×4로우
강성	2.5서킷×2로우、2.5서킷×3로우	1서킷×6로우

축방향 하중 계산

수평 왕복 운동 메커니즘

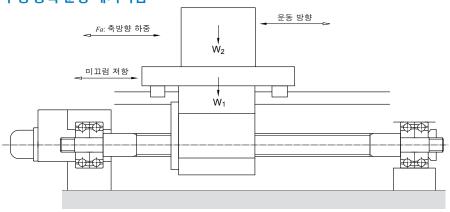


그림15. 수평 왕복 운동 메커니즘.

이송 설비에서 수평으로(전후)으로 이동하기 위한 왕복 작용에는 다음 식을 사용하여 축방향 하중 (Fa) 을 구할 수 있습니다:

가속 (왼쪽)	$Fa_1 = \mu \times mg + f + ma$ (5)
등속 (왼쪽)	$Fa_2 = \mu \times mg + f$ (6)
감속 (왼쪽)	$Fa_3 = \mu \times mg + f - ma$ ·····(7)
가속 (오른쪽)	$Fa_4 = -\mu \times mg - f - ma$ (8)
등속 (오른쪽)	$Fa_{s}=-\mu\times mg-f$ (9)
감속 (오른쪽)	$Fa_6 = -\mu \times mg - f + ma$ ·····(10)

여기서

a 가속도

$$a = \frac{V_{\text{max}}}{t_a}$$
 $\frac{V_{\text{max}}}{t_a}$ 최고속도

m 총 중량(테이블 중량+공작물 중량)

μ 미끄럼 표면 마찰 계수

f 무부하시의 저항

수직상하운동 운동 메커니즘

이송 설비에서 수직으로(상하)으로 이동하기 위한 왕복 작용에는 다음 식을 사용하여 축방향하중 (Fa) 을 구할 수 있습니다:

가속 (상승) $Fa_i = mg + f + ma$ (11) 등속 (상승) $Fa_j = mg + f$ (12) 감속 (상승) $Fa_i = mg + f - ma$ (13) 가속 (하강) $Fa_i = mg - f - ma$ (14) 등속 (하강) $Fa_i = mg - f - ma$ (15) 감속 (하강) $Fa_i = mg - f + ma$ (16)

여기서

a 가속도

$$a = \frac{V_{\text{max}}}{t_a}$$
 $\frac{V_{max}}{t_a}$ 최고속도

- m 총 중량 (테이블 중량+ 공작물 중량)
- μ 미끄럼 표면 마찰 계수
- ƒ 무부하시의 저항

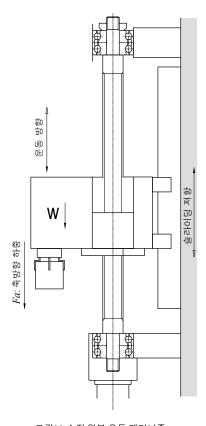


그림16. 수직 왕복 운동 메커니즘

볼 너트 설계의 유의사항

표준에서 벗어난 하중:(비틀림 하중 또는 반경 방향 하중)

볼스크류는 축방향 하중만을 받을 경우 최적의 성능을 발휘합니다. 볼너트와 나사축 사이의 홈에 있는 볼이 균등하게 하중을 받아 원활하게 회전합니다. 볼너트에 비틀림 하중이나 반경 방향 하중이 있을 경우, 일부 볼에서 이러한 하중을 균등하게 받지 못합니다. 이러한 하중은 또한 볼스크류 성능에 악영향을 미치며 볼스크류의 수명을 단축합니다. 기구 설계와 볼스크류 조립시 이점에 유의할 필요가 있습니다.

축방향 강성

로스트 모션(Lost Motion) 은 나사축의 강성과 그와 짝을 이루는 부품의 강성이 약하기 때문에 일어납니다. 우수한 위치결정 정밀도를 얻으려면 나사축와 짝을 이루는 부품의 비틀림 강성과 축방향 강성을 고려해야 합니다.

이송나사계의 축방향 강성

이송나사계의 축방향 강성을 K라고 하면 축방향의 탄성 변위량는 다음의 식으로 얻을 수 있습니다(17).

$$\delta = \frac{Fa}{K_T} \tag{17}$$

$$\frac{1}{K_T} = \frac{1}{K_S} + \frac{1}{K_N} + \frac{1}{K_B} + \frac{1}{K_H} \tag{18}$$

여기서

- δ 축방향의 이송나사계 탄성 변위량 (μm)
- *Fa* 축방향 하중 (*kgf*)
- K_T 이송나사계의 축방향 강성 ($kgf/\mu m$)
- K_S 나사축의 축방향 강성 (kgf /μm)
- K_N 너트의 축방향 강성 ($kgf/\mu m$)
- K_B 지지 베어링의 축방향 강성 ($kgf/\mu m$)
- K_H 너트 브라켓과 지지 베어링 브라켓의 강성 ($kgf/\mu m$)

나사축의 축방향 강성 : K_s

나사축의 축방향 강성은 나사축의 취부방법에 따라 달라집니다.

・고정-자유 (축방향)

$$K_{s} = \frac{A \times E}{x} \times 10^{-3} \quad \dots \tag{19}$$

여기서

 K_S 나사축의 축방향 강성 ($kgf/\mu m$)

A 나사축 횡단면적 $(A=\pi . dr^2/4 mm^2)$

dr 나사축곡경 (mm)

E 영률 (E=2.1×104 kgf/mm2)

x 취부간 (mm)

• 정-고정 (축방향)

$$K_{S} = \frac{A \times E \times L}{x(L-x)} \times 10^{-3} \quad \dots \tag{20}$$

여기서

₭
い
나사축의 축방향 강성 (kgf /
um)

L 취부간거리 (mm)

유의: x=L / 2, 이면 KS 는 최소가 되고 축방향에서 단성변위량은 최대가 됩니다.



그림17. 볼스크류 축 강성표

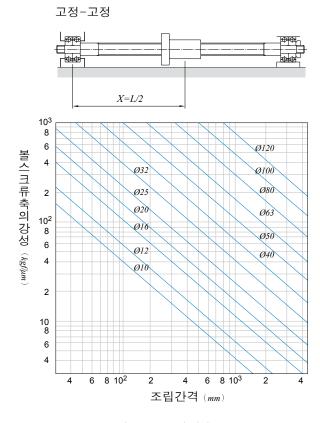


그림18. 볼스크류 축 강성표

너트의 축방향 강성 : K_N

탄성 변위량는(21)식으로 계산할 수 있습니다.

$$\delta_{a} = \frac{C}{\sin \alpha} \left(\frac{Q^{2}}{D_{w}} \right)^{1/3} \times \zeta \left(\mu m \right) \quad \cdots \qquad (21)$$

여기서

C 상수 (기준 C≒2.4)

α 볼과 홈의 접촉각

D_m 볼 직경 (mm)

Q 각 볼의 하중 (Q=Fa/Z . $sin \alpha kgf$)

Z 볼수

₹ 정밀도계수

• 무예압 타입

지수표에는 기본 동정격 하중(Ca) 30%에 해당하는 축방향 하중이 너트에 작용할 때의 이론적인 축방향 강성치가 제시되어 있습니다. 이 수치는 너트 장착 브라켓의 강성을 고려한 것이 아니므로 일반적으로 표 값의 80%를 기준으로 하여야 합니다.

기본 동정격 하중 (Ca) 이 30%가 아닌 경우의 강성치는(22)식으로 구할 수 있습니다.

$$K_N = 0.8 \times K \left(\frac{Fa}{0.3Ca} \right)^{1/3}$$
(22)

여기서

Κ 치수표에 주어진 강성치 (kgf /μm)

Fa 축방향 하중 (kgf)

Ca 기본 동정격 하중 (*kgf*)

• 예압 타입

기본 동정격 하중 (Ca) 0%에 해당하는 축방향 하중이 작용했을 때의 이론적인 축방향 강성치는 치수표에 제시되어 있습니다. 이 수치는 너트 장착 브라켓의 강성을 고려하지 않으므로 일 반적으로 표 값의 80%를 기준으로 해야 합니다.

기본 동정격 하중 (Ca) 이 10%가 아닌 경우의 강성치는(23)식에 의해 구할 수 있습니다.

$$K_N = 0.8 \times K \left(\frac{Fao}{\varepsilon \times Ca} \right)^{1/3} \dots (23)$$

여기서

K 치수표의 강성치 (kgf/μm)

Fao 예압하중 (*kgf*)

 ε 강성 계수 ε =0.10

 ε =0.05Ca 기본 동정격 하중 (kgf)

지지 베어링의 축방향 강성 : K_R

볼스크류 지지 베어링의 축방향 강성은 사용하는 지지 베어링에 따라 달라집니다.앵귤러 볼 베어링의 축방향 강성을 결정하는 일반적인 계산 방법은(24)식으로 구할 수 있습니다.

$$K_B = \frac{3Fao}{\delta_{aO}} \qquad (24)$$

여기서

 δao 축방향의 변위량

$$\delta_{ao} = \frac{0.44}{\sin \alpha} \left(\frac{Q^2}{D_w} \right)^{1/3}$$

$$Q = \frac{Fao}{Z \times \sin \alpha}$$
(25)

Fao 예압하중 (kgf)

α 지지베어링의 접촉각도 (°)

 $D\omega$ 지지 베어링의 볼 직경

Z 볼수

너트 브라켓과 지지 베어링 브라켓의 축방향 강성 $: K_H$

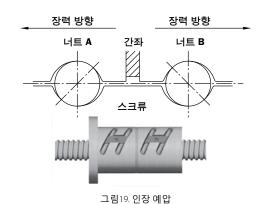
기계 설계 시에 충분히 검토하여 가능한 한 강성을 높게 설정하십시오.

피드 스크류 시스템의 비틀림 강성

비틀림에 의한 위치 오류의 원인:

- 나사축의 비틀림 변형.
- 커플링의 비틀림 변형.
- 모터의 비틀림 변형.

그러나 상기의 변형은 일반 기계(비고속 기계)에서는 아주 사소하여, 무시할 수 있습니다.


볼스크류의 예압과 효과

고정도 위치결정(high positioning accuracy) 을 행하는 방법은 두 가지 있습니다. 첫 번째는 일 반적인 방법으로, 볼스크류의 축방향공차를 제거하여 제로로 하는 것입니다. 두 번째는 축방 향 하중을 가하는 동안 탄성 변위를 작게 하기 위하여 볼스크류의 강성을 늘리는 것입니다. 이 두 가지 방법 모두 예압을 부여하여 실현합니다.

예압 방법

· 더블 너트 방식

2 개의 너트 사이에 간좌 (spacer) 를 삽입하여 예압을 부여합니다. 이 방식에는 두 가지가 있습니다. 첫 번째는 **그림19** 처럼 필요한 예압량만큼 두꺼운 간좌를 사용합니다. 간좌로 인해 너트 A 와 B 사이의 틈이 커져 장력이 생깁니다. 이러한 힘을 "인장 예압"이라고 합니다.

두 번째 방식은 **그림20**에서처럼 예압량만큼 얇은 간좌를 삽입합니다. 간좌는 너트 A 와 B 사이의 틈보다 작아서 반대 방향으로 너트 A 와 B를 압축하여 볼스크류에 예압을 줍니다. 이를 "압축 예압"이라고 합니다.

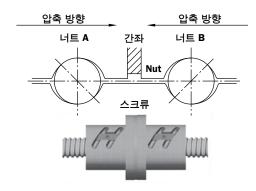


그림20. 압축 예압

• 싱글 너트 방법

그림21 에서 처럼 볼너트와 스크류 사이의 공간에 특대의 볼을 사용하여 필요한 예압을 얻습니다. 볼은 스크류 및 볼너트의 홈과 4 점에 접촉이 됩니다.

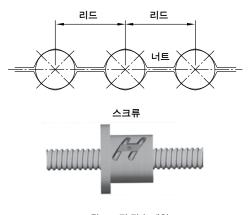


그림21.4 점 접촉 예압

싱클 너트 볼스크류 예압 방식이 또 하나 있습니다. **그림22**처럼 볼너트의 리드에서 필요한 만큼의 예압에 맞게 극히 짧은 거리를 이동하여 볼스크류에 예압을 줍니다.

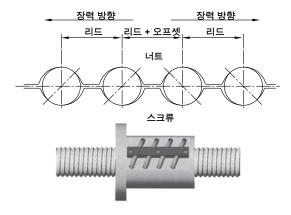


그림22. 리드 오프셋 예압

예압력과 탄성 변위의 관계

그림23의 너트 A와 B는 예압 간좌를 사용하여 조립합니다. 너트 A와 B의 예압력은 Fao, 이지만 방향은 반대입니다. 양 너트 사이의 탄변위는(δαο)입니다.

그림24에서처럼 너트 A에 적용되는 외부 축방향 힘 Fa 가 있습니다. 너트 A와 B의 변위는 다음과 같습니다:

 $\delta_A = \delta_{a0} + \delta_{a1}$ $\delta_B = \delta_{a0} - \delta_{a1}$

너트 A 와 너트 B의 하중은 다음과 같습니다

 $F_A=F_{ao}+F_a-F_a'=F_a+F_p$

 $F_B=F_{ao}-F_{a'}=F_p$

 $ightharpoonup F_A$ 와 F_B 방향반대

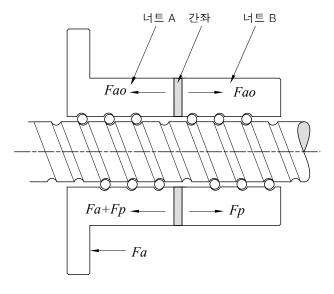


그림23. 더블너트 위치결정 예압

이는 너트 B의 변위가 줄기 때문에 Fa' 량으로 Fa 가 오프셋됨을 의미합니다. 그 결과 너트 A 의 탄성 변위가 줄어듭니다. 이러한 작용은 너트 B 의 변위가 제로가 될 때까지 계속됩니다. 즉 외부 축방향 힘으로 야기된 탄성 변위 δ a1 가 δ a0 가 되고 너트 B에 적용되는 예압력이 완전히 가해질 때까지 계속됩니다. 외부 축방향 힘과 관련된 식은 아래와 같습니다. :

 $\delta_{a0} = K \times Fao^{23}$ and $2\delta_{a0} = K \times Fi^{23}$ $(F_1/Fao)^{23} = (2\delta_{a0}/\delta_{a0}) = 2$ $F_1 = 2.8Fao = 3Fao$

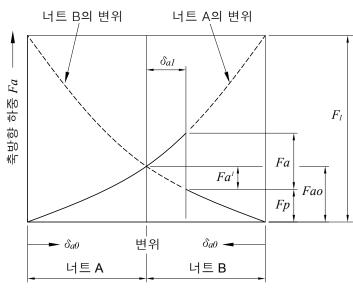


그림24. 위치결정 예압 도표

따라서 볼스크류의 예압량은 축방향 하중의 1/3로 설정하는 것이 좋습니다. 볼스크류의 너무 많은 예압은 온도가 상승되어 수명에 안 좋은 영향을 미칩니다. 하지만 수명과 효율성을 고려하여, 볼스크류의 최대 예압량은 일반적으로 기본 동격 하중의 10% 로 설정합니다.

그림25처럼 축방향 하중이 예압의 3 배이면, 무예압 볼너트의 탄성 변위는 예압 너트의 탄성 변위의 1/2 배가 됩니다.

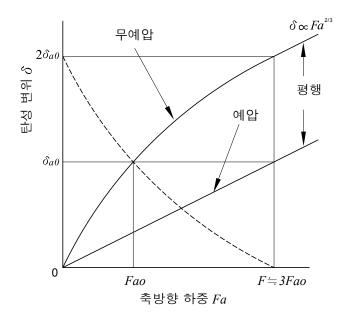


그림25. 볼스크류의 탄성 변위

위치결정 정도

위치결정 정도의 오차 원인

피드 정도(feed accuracy) 오차의 일반적인 원인은 리드 오차와 이송나사계 의 강성입니다. 열 변형과 이송나사계 조립과 같은 기타의 요인도 피드 정도에 중요한 역할을 합니다.

리드 정도 선정

[A1-4]페이지를 참조하십시오. 지정 이동선(Specified travel line) 은 누적호칭리드선과 일치해야 합니다. 그러나 기계 작동 시 열팽창으로 일어난 연장이나 외부 하중으로 일어난 길이 단축을 메우기 위해, 누적 기준 리드선선은 누적호칭리드선에 + 또는 -로 설정할 수 있습니다. 기계 설계자는 본사의 제조 도면에 지정 이동의 값을 보여주거나, 본사의 10년 이상의 축적된 경험으로 이 값을 설정하도록 도움을 드릴 수 있습니다.

볼스크류의 예장력으로 열작용을 상쇄하기 위한 또 다른 방법이 있습니다. 일반적으로 예장력은 약 2-3°C의 열팽창에 상응하도록 볼스크류를 연장시킵니다.

열변위 고려

작동 시 나사축의 온도가 높아지면 나사축이 연장되어 위치결정 정도가 감소합니다. 열로 인한 나사축의 연장과 단축은(26)식을 사용하여 계산할 수 있습니다.

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L$$
(26)

여기서

ΔL_θ 열변위량 (μm)

ρ 열 팽창 (12 μm/m°C)

θ 나사축 온도 변화 (°C)

L 나사부의 유효 길이 (mm)

다시 말하면, 나사축 온도가 1도 높아지면 미터당 $12\mu m$ 만큼 샤프트가 연장됩니다. 볼스크류의 속도가 높아질수록 열 발생은 더 커집니다. 따라서 온도 증가 때문에 위치결정 정도가 감소하게 됩니다. 고정도(high accuracy) 가 필요한 곳에서는 온도 상승을 막기 위한 대책으로다음을 고려해야 합니다. :

온도 조절:

- 적절한 예압 선정.
- 올바르고 적절한 윤활제 선정.
- 볼스크류의 리드를 크게 하여 회전 속도 감소.

강제 냉각:

- B볼스크큐의 중공 냉각.
- 볼스르큐 외주면을 윤활유와 공기로 냉각.

온도 상승을 야기하는 요인 제거:

- 볼스크류의 누적 리드 목표치를 마이너스로 설정
- · 기계의 안정 작동 온도에 맞게 기계를 워밍업
- 기계 설치시 볼스크류에 예장력 사용작동 시 나사축의 온도가 높아지면 나사축이 연장되어 위치결정 정도가 감소합니다.
- 폐회로 위치결정 제어 사용.

a. 피로 수명- 볼이나 나사면 홈에 최초로 플레이킹이 발생하는 기간

b. 정도 수명(Accuracy life)- 나사면 홈 표면의 마모로 인한 정도의 악화로 볼스크류를 더 이상 사용할 수없는 기간.

피로 수명

하중 하에서 볼스크류를 사용할 때 피로 수명을 계산하기 위해서 기본 동정격 하중 (Ca)을 사용합니다.

기본 동정격 하중 Ca

기본 동정격 하중 (Ca) 이라는 것은 일정 수량의 볼스크류를 같은 조건으로 각각 회전시켰을 때 그 중의 90% 가 플레이킹을 일으키지 않고 106 만 회전까지 회전할 수 있는 축방향 하중입니다.

피로 수명

수명 계산:

피로 수명을 나타내는 방법은 3가지가 있습니다:

- 총 회전수.
- 총 운전시간.
- 총 주행거리.

$$L = \left(\frac{Ca}{Fa \times f_W}\right)^3 \times 10^6 \quad \dots \tag{27}$$

$$L_t = \frac{L}{60 \times n} \qquad (28)$$

$$L_s = \frac{L \times l}{10^6} \qquad (29)$$

여기서

L 피로 수명 (총 회전수)(rev)

It 피로 수명 (총 운전시간)(*hr*)

Ca 기본 동정격 하중(*kgf*)

Fa 축방향 하중(*kgf*)

n 회전 속도(rpm)

리드(*mm*)

fw 부하율 (표14 참조)

표14 부하율 fw

진동 및 충격	속도 (V)	fw
미	V<15 (<i>m/min</i>)	1.0~1.2
소	15 <v<60 (m="" min)<="" td=""><td>1.2~1.5</td></v<60>	1.2~1.5
중	V>60 (m/min)	1.5~3.0

피로 수명이 너무 길거나 너무 짧으면 볼스크류 선정에 적합하지 않습니다. 수명이 길수록 볼스크류의 치수도 커져 비경제적입니다. 다음의 표로 볼스크류의 피로 수명을 참조하십시오.

 Machine center
 20,000 시간

 생산 기계
 10,000 시간

 자동 제어장치
 15,000 시간

 측량 기구
 15,000 시간

수명 계산

축방향 하중이 계속적으로 변하는 경우에는 평균 축방향 하중 (Fm) 을 구하고 평균 회전속도 (Nm) 를 이용하여 수명 계산을 합니다. 축방향 하중 (Fa) 을 Y축으로 회전수 (n.t) 를 X축으로 설정하면 3종류의 곡선이나 선을 얻습니다.

· 점진적 변동 곡선 (**그림26**)

평균 하중은(30)식으로 계산할 수 있습니다:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \dots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} \dots (30)$$

평균 회전 속도는(31)식으로 계산할 수 있습니다:

$$N_m = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_1 + t_2 + \dots + t_n}$$
 (31)

축방향 하중 (<i>kgf</i>)	회전 속도 (<i>rpm</i>)	시간비 (<i>Sec</i> or %)
F ₁ F ₂	n ₁ n ₂	<i>t</i> ₁ <i>t</i> ₂
$\dot{F_n}$	n _n	t_n

· 상사 직선 (**그림27**)

평균 하중 변동이 상사 직선처럼 될 경우 평균 회전 속도는(32)식으로 계산할 수 있습니다.

$$F_m = 1/3(F_{min} + 2F_{max})$$
(32)

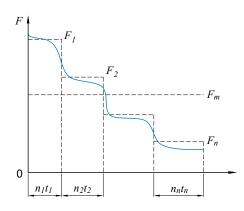


그림26. 점진적 변동 곡선 하중

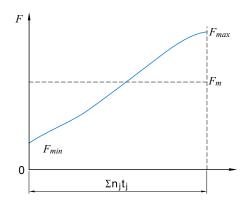


그림27. 상사 직선 하중

- 사인 곡선의 두 가지 경우
- 1. 평균 하중 변동 곡선이 아래의 도**표28**와 같을 경우,평균 회전 속도는(**33)**식으로 계산할 수 있습니다.

2. 평균 하중 변동 곡선이 아래의 도**표29**와 같을 경우,평균 회전 속도는(34)식으로 계산할 수 있습니다.

 $F_m = 0.75 F_{max}$ (34)

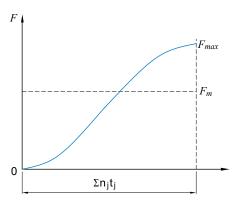


그림28. 사인 곡선의 하중과 같은 변동 (1)

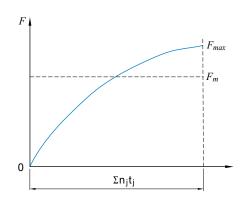


그림29. 사인 곡선의 하중과 같은 변동 (2)

장착 오차의 영향

비틀림 하중이나 반경 방향 하중이 볼스크류에 가해지면 볼스크류의 작동과 수명에 나쁜 영향을 미칩니다. 피드 시스템(볼스크류, 지지 베어링, 가이드웨이)을 더욱 강성으로 만들어장착 오차를 줄여야 합니다.

볼스크류는 이송 장치의 이송 방향을 따라 정밀한 평행도와 직각도를 얻기 위해 기계의 요크(브라켓) 에 정확하게 장착해야 합니다. 이는 최소의 백래쉬를 보증하기 위해서 매우 중요합니다.

너트형식: R40-10B2-FSWC

규격 조건

축직경: 40 mm 축방향 미는 힘Fa=300 kgf

볼 직경: 6.35 mm 직경변위 0

순환턴수 : 2.5곤 2열

간격 : 50 μm

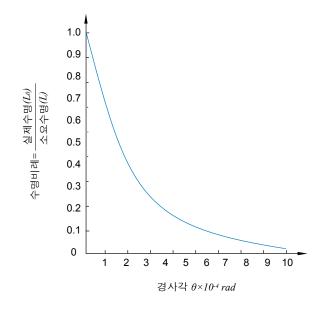


그림30. 경사조립오차의 영향

나사 홈의 허용 하중

볼스크류가 거의 작동하지 않고 저속도로 작동되더라도 선정 시에는 최대 하중이 기본 정정 격 하중보다 훨씬 작아야 합니다.

기본 정정격 하중 Co

기본 정정격 하중이란 구름 베어링이 정지하고 있는 경우나 내외륜이 상대적으로는 정지 상태에 있는 경우 그 베어링 내의 최대 응력을 받고 있는 접촉 부분에서 전동체와 궤도륜의 영구 변형량의 총합이 전동체 직경의 0.0001배가 되는 일정 방향으로 움직이는 베어링 하중을 말합니다. 볼스크류의 기본 정정격 하중은 축방향 하중입니다.

허용 축방향 하중

 $F_{max}=C_0/f_s$

여기서

 f_{c} 정적 안전 계수

일반 산업용 기계1.2~2.0 공작기계1.5~3.0

재료와 경도

PMI 볼스크류의 재료와 경도는

표15 볼스크류의 재료와 경도

명명	재료	열처리	경도 (HRC)
정밀 연삭	50CrMo4 QT /동일	고주파 경화	58~62
전조	S55C /동일	고주파 경화	58~62
너트	SCM420H /동일	침탄 경화	58~62

경도수치

그림31와 같이 , PMI 표준재료가 아닌 다른 재료를 사용하여 표면경도가 HRC58이 미달일 경우에는 기본동정 격하중(Ca)와 기본정정격하중(Co)는 변경할 필요가 있으며.그 사이즈는표에는 Ca,Co로 값을 표기하여 아래 계산방법으로 다시 계산을 합니다.

 $C_a'=f_H\times C_a$ $C_o'=f_H'\times C_o$

여기서

 $f_{\!\scriptscriptstyle H}$ 경도수치

 $f_{H'}$ 정경도수치

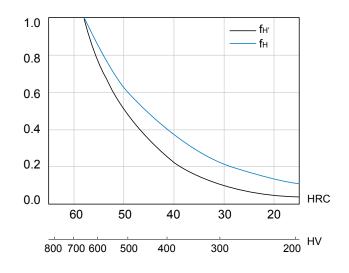
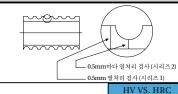


그림31. 경도수치

열처리검증서류


PRECISION MOTION INDUSTRIES, INC. 볼스크류 열처리 검사 보고서

견본#	P90227		
고객		P.O.번호	규격
제품	볼스크류	03-016030-1	R38-I5B2-FSVC-557-685.8-C4
재료	50CrMo4QT		
열처리	고주파 표면 경화		

열처리 (밑그림 참조)

07	D 1 41 1 41
경도	표면 58-62 HRC
케이스 깊이	골밑 1.5mm 아래
미세구조	표면 부위의 마르텐사이트
	중추 부위의 소르바이트
뜨임처리	섭씨 160도에서

HV

720

700

670

660 650

630

620

610

600

580

570

560

540

480 440

420

400 380 360

320 280

240

HRC

64.0

63.3 62.5 61.8

61.0

60.1 59.2

58.8 58.3

57.8

56.8

56.3

55.7

55.2

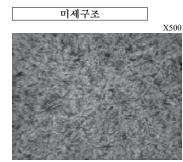
54.1

53.6

53.0

51.7

44.5


42.7

34.4

27.1 24.0

20.3

깊이	시리즈 1	시리즈 2
0	725	718
1	705	698
2	704	705
3	698	681
4	694	642
5	679	562
6	625	277
7	547	277
8	390	
9	286	
10	288	
11		
12		
13		
14		
15		

												— 시	리즈 1 -	•	시리즈	2
700																
600																
500																-
400 300																
200)					•					_
100														\vdash	+	-
0 () 1	2	2 3	3 .	4	5	6	7 :	3	9	10	11	12	13	14	15
낖이 (각 크기=0.5mm)																
비고				,	합격ㅇ	여부				Q.C.	책임지	}				7

윤활

리튬 베이스 윤활유가 볼스크류 윤활에 사용됩니다.

점성은 30~140 cst (40℃) 이고 ISO 등급은 32~100 입니다.

선정:

- 1. 저온에서는 저점성 윤활유 사용
- 2. 고온, 고하중, 저속도에서는 고점성 윤활유 사용.

표16 윤활 확인 및 공급 간격

방법	확인 간격	확인 항목	공급이나 대체 간격
자동간격으로 기름 공급	매주	기름양, 순도	공급양은 기름통 용량에 따라 다름
윤활 그리스	기계가 작동하기 시작한지 2-3달 안에	이물질	확인한 결과에 따라서 일반적으로 일년에 한번 공급
기름통	기계 작동 전 매일	유면	소모량에 따라 공급

표17 주입량 계산

윤활방법	검사및 추가 원칙
기름	일주일에 한번 검사,검사시마다 공급을하여 기름통 용량에 따라 적당히 공급한다. 윤활유가 오염이 되였을때 교체작업을 한다. 주입량 계산: $\frac{ 볼스크류 외경(mm)}{90} c.c. \cdots (35)$

표18 유지주입량 계산

윤활방법	검사및 추가 원칙
	작업초기단계 2~3달내로 검사,이물질이 있는지 여부를 검사한다.
	유지가 오염이 되였을시엔 교체작업을 한다.
유지	사용형식및 작업환경에 따라 적당히 유지 공급을 한다.주입량은 너트 내
	부용량공간의 50%. 아래 공정식은 윤활유지 주입량 공식입니다.
	다른 브랜드 유지를 혼합사용하지 않는다.

강구직경d	Ø1.588	Ø2.0	Ø2.381	Ø2.778	Ø3.175	Ø3.969	Ø4.762
G값	0.8	1.0	1.0	1.5	1.2	1.3	2.0
강구직경d	Ø6.350	Ø7.144	Ø7.938	Ø9.525	Ø12.7	Ø15.875	Ø19.05
G값	3.0	3.5	3.9	5.0	6.0	9.6	12

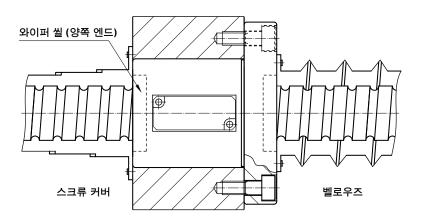
$$Q = \left[\left(\sqrt{ (\pi \times dm)^2 + L_d^2} \times \pi d^2 \times \text{순환턴수} \right) \times \frac{1}{1000} + \left(\frac{\pi L \times (2DG + G^2)}{4} \right) \right] \times \frac{1}{1100} \quad \dots (36)$$

Q 윤활유지 주입량 (cm^3) G

G 강구사이즈수치

D 볼스크류외경(mm)

Ld □ □ (mm)


d 강구직경(mm)

L 너트길이(mm)

dm 볼중심경(*mm*)

방진

구름 베어링처럼 볼스크류 안으로 조각이나 물질 같은 입자가 들어갈 경우 마모가 빨라집니다. 일부 심각한 경우에는 볼스크류가 파손됩니다. 이러한 문제가 일어나지 않도록 볼너트의양쪽 엔드에 와이퍼 어셈블리가 있습니다. 방진 효과를 향상시키기 위해 스크류 커버 또는 벨로우즈를 사용하시기 바랍니다. 필요한 정보가 있으시면 *PMI*로 문의하십시오. 볼너트에서윤활유가 새지 않도록 봉하는 와이퍼에 사용하는 "이링"도 있습니다.

구동 토오크

볼스크류의 작동 토오크

정상 구동

직선 운동으로 변형된 회전 운동을 정상 구동 (Normal Drive) 이라고 합니다. 필요한 토오크를 (37) 식으로 얻을 수 있습니다

$$T_a = \frac{Fa \times l}{2\pi \times \eta_1}$$
 (37)

리버스 오퍼레이션

회전 운동으로 변동된 직선 운동을 리버스 오퍼레이션 운동(reverse operation motion) 이라고 합니다. 필요한 토오크는 (38) 식으로 얻을 수 있습니다.

$$T_b = \frac{Fa \times l \times \eta_2}{2\pi}$$
 (38)

예압 토오크

볼스크류의 예압으로 인한 마찰 토오크. 필요한 토오크는 (39) 식으로 구할 수 있습니다.

$$T_p = k \times \frac{Fao \times l}{2\pi} \quad \dots \tag{39}$$

여기서

 T_a 정상 작동 토오크

 F_a 축방향 하중

1 리드

η 정상 효율

여기서

 T_h 리버스 오퍼레이션 토오크

 η_2 리버스 효율

여기서

Tp 예압 토오크

Fao 예압

k 예압 토오크의 계수 (1)[A1-12]식 참조

 $k = 0.05 \times (tan\beta)^{-0.5}$

모터의 구동 토오크

정속 구동 토오크

하중을 상쇄하고 볼스크류를 정속으로 일정하게 회전하는 데 필요한 토오크를 정속 구동 토오크(driving torque for constant speed) 라고 합니다. 구동 토오크 = 예압 토오크 + 축방향 하중 마찰 토오크 + 베어링 마찰 토오크.

$$T_1 = \left(k \times \frac{Fao \cdot l}{2\pi} + \frac{Fa \cdot l}{2\pi \cdot \eta} + T_B\right) \times \frac{N_1}{N_2}$$
 (40)

여기서

 T_I 정속 구동 토오크

Fao 예압

 F_a 축방향 하중

F 절삭 저항

μ 가이드 표면 마찰 계수

₩ 총 중량 (작업대 중량 + 작업물 중량)

 T_R 베어링 마찰 토오크

N, 기어 1

N₂ 기어 2

일반적으로 정속 구동 토오크는 모터의 정격 토오크 30% 이상이어서는 안됩니다.

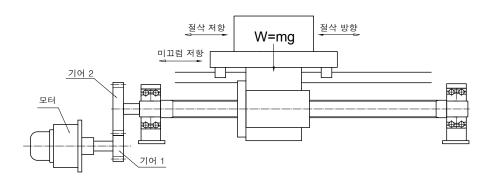


그림32. 절삭 기계 도표

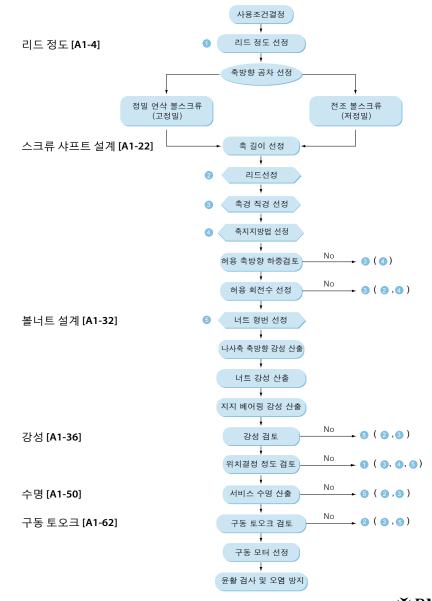
볼스크류의 올바른 타입 선정

등가속도 구동 토오크

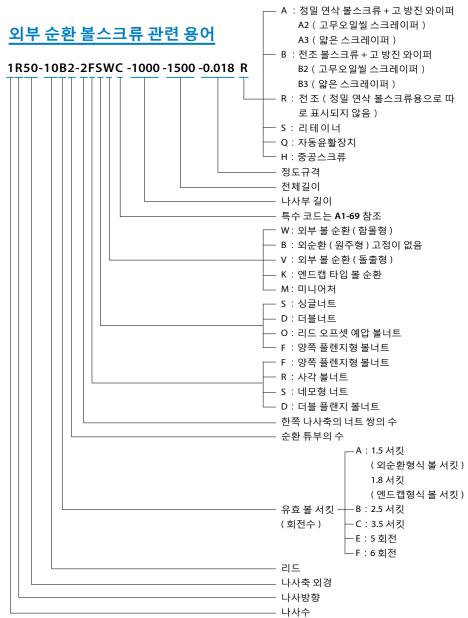
하중을 상쇄하고 일정한 가속도로 볼스크류를 회전시키는데 필요한 토오크는 등가속도 구 동 토오크 (driving torque at constant acceleration) 입니다.

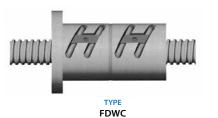
$$T_2 = T_1 + J \cdot \dot{\omega} \qquad (41)$$

$$J = J_M + J_{GI} + \left(\frac{N_I}{N_2}\right)^2 \times \left[J_{G2} + J_{SH} + J_W + J_C\right] \dots (42)$$


$$J_w = \frac{m}{g} \left(\frac{l}{2\pi}\right)^2 \tag{43}$$

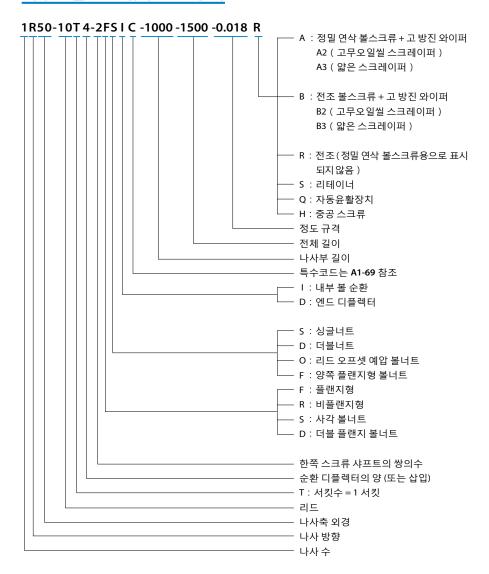
여기서

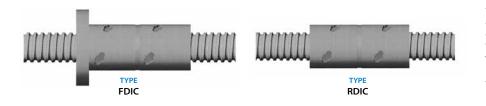

- T2 등가속도 구동 토오크
- 모터의 각가속도 (angular acceleration)
- 총 관성
- *JM* 모터의 관성
- JGI 기어 1의 관성
- *JG2* 기어 2의 관성
- 나사축의 관성
- 이송 장치(볼스크류, 테이블)의 관성
- 커플링의 관성
- 총 질량(작업대 질량 + 작업물 질량)
- 리드
- 중력 가속도

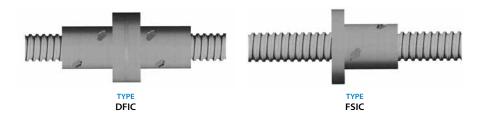

· 실린더의 관성 (볼스크류, 기어)

$$J = \frac{1}{32} \rho \pi D^4 L \quad (kg \cdot m^2)$$
(44) 여기서 ρ 재료 밀도 $= \frac{\pi \gamma}{32g} D^4 L \quad (kg \cdot m^2)$ (45) ρ 제료 밀도 ρ 비중 ρ 실린더의 직경 ρ 실린더의 직경 ρ 실린더의 질량

PMI 볼스크류 관련 용어






RSWC

SSWC

내부순환 볼 스큐루 관련용어

표19 너트 특수 코드

С	정밀급 스크류					
W	전조급 스크류					
E	고리드 시리즈					
Н	고하중 볼스크류					
N	전조급 스크류(DIN 69051너트사이즈)					
U	전조급 스크류+씰(DIN 69051너트사이즈)					
M	자동화산업 전용					
Α	엔드 디플렉터타입 냉각너트-순환형					
В	엔드 디플렉터타입 냉각너트-직통형					
K	고리드시리즈 냉각너트-순환형					
Т	너트 자동회전형					

볼스크류 타입 선정의 표본 공정

절삭 장치

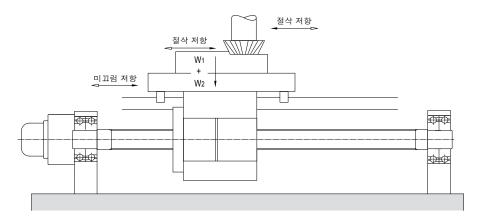


그림33. 절삭 장치

설계 조건

테이블 중량 : $W_1 = 1100 \, kg$ 작업물 중량 : $W_2 = 800 \, kg$ 최대 이동거리 : $S_{max} = 1000 \ mm$ $V_{max} = 14 \, m/min$ 고속 피드 : 수명 : $L_t = 25000 \ h$ 미끄럼 표면 마찰 계수 : $\mu = 0.1$

구동 모터 : $N_{max} = 2000 \, rpm$

위치결정 정도: ±0.030/1000 mm (no load)

반복 정도 (accuracy): ±0.005 mm (no load) 로스트 모션 : 0.02 mm (no load)

절삭가공 및 드릴가공공 가공내용

기계적 조건

계산 데이터	축방향 경	하중(<i>kgf</i>)	피드 속도	시간
운전 종류	절삭 저항	미끄럼 저항	mm/min	비율(%)
고속 피드	0	190	14000	30
경절삭	500	190	600	55
중절삭	950	190	120	15

미끄럼 저항 : $Fa = \mu (W_1 + W_2)$ $=0.1\times(1100+800)$ =190 (kgf)

결정해야 할 항목

- 나사축 외경, 리드, 너트의 타입
- 정도 규격
- 열변위
- 구동 모터

※*PMI* A1-71

나사축 외경, 리드, 너트 선정

리드(l):

모터의 최고 회전 속도

$$l \ge \frac{V_{max}}{N_{max}} = \frac{14000}{2000} = 7 \ (mm)$$

◎리드 7mm 이상. (*PMI* 카탈로그에 따라 상세한 분석에는8및10mm를 선택)

• 기본 동정격 하중 (Ca):

운전 종류	축방향 하중	피드	속도	시간
-	-	<i>l</i> = 8	<i>l</i> = 10	비율(%)
고속 피드	$F_{I} = 190$	$N_I = 1750$	$N_I = 1400$	$t_{I} = 30$
경절삭	$F_2 = 690$	$N_2 = 75$	$N_2 = 60$	$t_2 = 55$
중절삭	$F_3 = 1140$	$N_3 = 15$	$N_3 = 12$	$t_3 = 15$

평균 하중과 평균 회전 계산

평균하중
$$F_{m} = \left(\frac{F_{I}^{3} \cdot n_{I} \cdot t_{I} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \dots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{I} \cdot t_{I} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}}$$

평균 회전
$$N_m = \frac{n_I \cdot t_I + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t_I + t_2 + \dots + t_n}$$

리드 / (mm)	8	10
평균 하중 $F_{m}\left(kgf ight)$	330	330
평균 회전 <i>N_m (rpm</i>)	569	455

기본 동정격 하중 계산

$$L = \left(\frac{Ca}{Fa \times f_w}\right)^3 \times 10^6 \qquad L_t = \frac{L}{60N_m}$$

 $Ca = (60N_m \times L_t)^{1/3} \times F_m \times f_w \times 10^{-2}$

설계 조건에 따라 :

 $L_{t} = 25000 (hours)$

 $f_{w} = 1.2$

수명이 >25000(시간)을 넘어야할 경우

Ca > 3756 (*kgf*) 이어야 합니다.

수명이 > 25000 (시간) 을 넘어야 할 경우

Ca > 3487 (*kgf*) 이어야 합니다.

· 너트 타입 선정 :

강성이 주요 관심사일 경우, 로스트 모션은 덜 중요하므로 다음과 같은 사양을 선정합니다.

- 1. 외부 순환 볼스크류
- 2. 타입: FDWC
- 3. 서킷 수: B×2 또는 B×3

Ca 값은 본 카탈로그에서 찾아볼 수 있음

단위:(kgf)

나사축 외경	리드8	3 (mm)	리드1	0 (<i>mm</i>)
<i>(mm)</i>	B×2	B×3	B×2	B×3
32	3210	-	4660	-
36	3265	-	4930	-
40	3410	-	5220	-
45	3650	5175	5480	7760
50	3900	5520	5790	8200

• 나사축 직경 선정

볼스크류 샤프트 직경은 고속 피드의 임계 회전 속도로 결정될 수 있습니다.

지지 엔드 양쪽이 고정되도록 합니다.

따라서 허용 회전 속도:

$$n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{EIg}{\gamma A}} = f \frac{dr}{L^2} \times 10^7$$

$$\Rightarrow dr \ge \frac{n \times L^2}{f} \times 10^{-7}$$

L = Max. 스트로크 + 너트 길이/2 + 비나사 부위의 길이

=1000 + 100 + 200 = 1300 (mm)

나사축 지지 방식은 고정-고정 : f = 21.9

l=8 (*mm*) 인 경우...... *dr*≥13.5 (*mm*)

최대 회전 속도가1750 (rpm), 인 경우, 골밑 부위의 나사축 직경은 14mm 보다 커야 합니다

◎ 따라서 나사축 직경은 20 에서 50 mm 사이여야 합니다.

 $l=10 \ (mm) \dots dr \ge 10.8 \ (mm)$

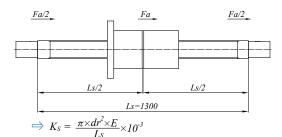
최대 회전 속도가 1400 rpm 인 경우, 골밑 부위의 나사축 직경 11 mm 보다 커야 합니다.

- O So screw shaft diameter shall be ranged in between 16 and 50 mm.
- 강성 고려

초기 조건에 의해:

로스트 모션: 0.02 mm (무하중)

피드 시스템의 부품의 총 변위 (나사축, 볼너트, 지지 베어링 등) 0.016mm입니다. 따라서 피드


시스템의 한쪽 탄성 탄성 변

위는 $\Delta L \leq 8(\mu m)$ 입니다.

나사축의 축방향 강성 : K_s 、나사축의 탄성 변위 : ΔL_s

$$K_S = \frac{A \times E \times L}{x(L-x)} \times 10^{-3}$$

탄성 변위가 최소인 부분은 나사축의 중앙입니다. 다음 도표는 x = LS/2 을 사용하였습니다.

$$\Delta L_S = \frac{Fa}{K_S} = \frac{Fa \times L_S}{\pi \times dr^2 \times E} \times 10^3$$

여기서Fa는 190 (kgf) 의 미끄럼 저항.

결과는[A1-76]표에 있습니다.

너트의 축방향 강성 : K_{ω} 、너트의 탄성 변위 : ΔL_{ω}

예압을 최대 축방향 하중의1/3 선정.

$$F_{ao} = F_{max}/3 = 1140/3 = 380 \text{ (kgf)}$$
 $K_n = 0.8 \times K \left(\frac{F_{ao}}{\varepsilon \times C_a}\right)^{1/3}$
 $\varepsilon = 0.1$, 대입
 $\Delta L_n = \frac{F_a}{K_n}$

계산결과는[A1-76]표에 있습니다.

너트 호칭형번.	dr	Са	K	스크	3류	너	총	
니프 오징용한	u,		Λ	K_s	ΔL_s	K_n	ΔL_n	ΔL
32-10B2-FDWC	27.05	4660	125	37.1	5.1	93.0	2.0	7.1
36-10B2-FDWC	31.05	4930	138	48.9	3.9	101.2	1.9	5.8
40-10B2-FDWC	35.05	5220	151	62.3	3.0	108.7	1.7	4.7
45-10B2-FDWC	38.05	5480	167	73.5	2.6	118.3	1.6	4.2
50-10B2-FDWC	42.05	5790	182	89.7	2.1	126.5	1.5	3.6

◎ΔL≦8(μm)의 조건

베어링 강도를 무시하고 다음같이 설정합니다.경제적인 안전고려사항

볼스크류의 종류: 40-10B2-FDWC

나사축의 직경: 40 (mm)

리드: 10 (mm)

- 볼스크류의 길이
- L =최대왕복거리+너트길이+나사가 없는 부분의 길이(저널말단부 길이 포함)
- = 1000+180+100
- = 1280
- ≒ 1300 (mm)
- 볼스크류의 길이
- a. 피로수명:

$$L_t = \left(\frac{Ca}{F_m \times f_w}\right)^3 \times 10^6 \times \frac{1}{60n}$$
$$= \left(\frac{5220}{330 \times 1.2}\right)^3 \times 10^6 \times \frac{1}{60 \times 455}$$

= 83900 (hours) > 25000 (hours)

b. 회전속도허용치

$$n = f \times \frac{dr}{L^2} \times 10^7$$
$$= 4540 (rpm)$$

나사축의 임계속도는 4540(rpm) 입니다. 도안의 최대회전속도보다 훨씬 더 큽니다. 따라서, 선택한 볼스크류의 안전성이 확보되어야 합니다.

리드 정도 선정

필요한 위치결정 정도: ±0.030/1000 mm (최대 이동거리)

표2[A1-6]참조, 누적 기준 리드 편차 (±E), 및 총 상대 변동(e)

정도 규격: C4

 $E = \pm 0.025/1250 (mm)$

e = 0.018 (mm)

열변위 고려

지지 베어링의 하중 성능에 따라 지정 이동 (T) 보상을3℃로 합니다.

• 열변위 : ΔL_{θ}

$$\Delta L_{\theta} = \rho \cdot \theta \cdot L$$

- $= 12.0 \times 10^{-6} \times 3 \times 1300$
- = 0.047 (mm)
- •예장력 : F_{θ}

$$F_{\theta} = \Delta L_{\theta} \times K_{S} = \frac{\Delta L_{\theta} \cdot E \cdot \pi dr^{2}}{4L}$$

$$= \frac{0.047 \times 2.1 \times 10^{4} \times \pi \times 27.05^{2}}{4 \times 1300}$$

$$= 436 (kgf)$$

지정 이동(T): -0.047/1300

예장력: 436 (kgf)

스트레칭: -0.047 (mm)

구동 모터 선정

<필요한 사양>

최대 회전 속도-----1500 (rpm)

최대 회전 속도에 필요한 시간-----0.15초 이내

• 관성

a.나사축 :

$$GD_{S}^{2} = \frac{\pi \rho}{8} \times D^{4} \times L = \frac{\pi \times 7.8 \times 10^{-3}}{8} \times 4^{4} \times 130 = 101.9 \text{ (} kgf \cdot cm^{2}\text{)}$$

b.이송 장치:

$$GD_w^2 = W\left(\frac{l}{\pi}\right)^2 = (1100+800) \times \left(\frac{1.0}{\pi}\right)^2 = 192.5 (kgf \cdot cm^2)$$

c.커플링 :

$$GD_J^2 = 40 (kgf \cdot cm^2)$$

d.총 관성 :

$$GD_L^2 = GD_S^2 + GD_w^2 + GD_J^2 = 334.4 \ (kgf \cdot cm^2)$$

• 구동 토오크

이 경우, 가속으로 기계가 작동하는 데 걸리는 시간은 제한적입니다. 기계를 일정한 속도로 가동하면 각가속도로 생기는 토오크는 신경 쓰지 않습니다.

a. 예압 토오크:

$$T_P = k \times \frac{Fao \times l}{2\pi} = 0.18 \times \frac{380 \times 1.0}{2\pi} = 10.8 \text{ (kgf \cdot cm)}$$

k = 0.18 $Fao = F_{max}/3$ b. 마찰 토오크:

고속 피드:

$$T_a = \frac{Fa \times l}{2\pi \times \eta} = \frac{190 \times 1.0}{2\pi \times 0.9} = 33.6 \, (kgf \cdot cm)$$

경절삭 :

$$T_b = \frac{690 \times 1.0}{2\pi \times 0.9} = 122.1 (kgf \cdot cm)$$

중절삭 :

$$T_c = \frac{1140 \times 1.0}{2\pi \times 0.9} = 201.7 (kgf \cdot cm)$$

구동 토오크에 필요한 최대량은 예압 토오크 + 중절삭의 마찰 토오크입니다.

$$T_L = T_p + T_c$$

$$= 212.5 (kgf \cdot cm)$$

• 구동 모터 선정

<선정 조건>

a. 최대 회전 속도-----*N_{max}*≥1500 (*rpm*)

b. 정격 토오크---- $T_M > T_L$

c. 로터 관성----- $J_M \ge J_L/3$

구동 모터에 필요한 사양은 상기의 조건에 따라 결정됩니다.

◎모터 사양

출력 $W_{M} = 3.6 (kW)$

최대 회전 속도 $N_{max} = 1500 (rpm)$

정격 토오크 $T_M = 22.6 (N.m)$

로터 관성 $GD_{M}^{2} = 750 (kgf.cm^{2})$ • 최대 회전 속도에 필요한 시간 확인

$$t_a = \frac{J}{T'_M - T_L} \times \frac{2\pi N}{60} \times f$$

$$J$$
: 총관성 $J=\frac{GD^2}{4g}$

 $T'_M = 2 \times T_M$

 T_{t} : 회전 토오크 (고속)

f: 안전 계수(이 경우 **1.4** 선택)

$$t_a = \frac{(334.3 + 750)}{4 \times 980 \times (2 \times 230 - (18.1 + 33.6))} \times \frac{2 \pi \times 1400}{60} \times 1.4 = 0.139 \text{ (sec)} < 0.15 \text{ (sec)}$$

따라서 상기의 모터 사양은 설계 조건과 일치합니다.

볼스크류의 응력 계산

$$\sigma = \frac{F}{A} = \frac{F_{max}}{\pi dr^2/4} = \frac{1140 \times 9.8 \times 4}{\pi \times 35.05^2} = 11.56 \ N/mm^2 = 1.16 \times 10^7 \ N/m^2$$

(dr나사축 골밑 직경)

dr=40+1.4-6.35=35.05 (mm)

$$\tau = \frac{T \times r}{J} = \frac{21540 \times 20}{148167} = 2.91 \text{ N/mm}^2 = 2.91 \times 10^6 \text{ N/m}^2$$

 $T_{max} = T_L = 219.8 (kgf \cdot cm) = 21540 (N \cdot mm)$

$$J = \frac{\pi dr^4}{32} = \frac{\pi (35.05^4)}{32} = 148167 (mm^4)$$

$$\sigma_{max} = \sqrt{\sigma^2 + \tau^2}$$
$$= 11.9 \times 10^6 \ N/m^2$$

50CrMo4 스틸 인장 강도 $1.1 \times 10^8 \ N/m^2 > \sigma_{max}$ 항복 강도 $0.9 \times 10^8 N/m^2 > \sigma_{max}$ ◎따라서 선택한 볼스크류는 안전합니다.

나사축의 좌굴 하중 계산

$$P = \alpha \frac{\pi^2 nEI}{L^2} = m \frac{dr^4}{L^2} \times 10^3 = 20.3 \times \frac{35.05^4}{1100^2} \times 10^3 = 25300 \ (kgf) > F_{max} \ (1140 \ kgf)$$

◎따라서 선택한 볼스크류는 안전합니다.

고속 운송 장치(수평)

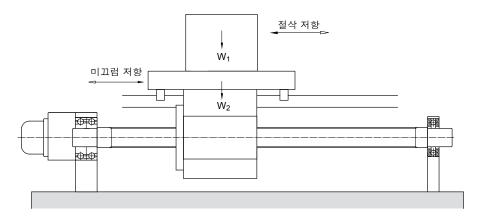


그림34. 최대 속도 운송 장치

설계 조건

테이블 중량: $W_1 = 50 \, kg$ 작업물 중량: $W_2 = 25 \ kg$ 최대 이동거리: $S_{max} = 1000 mm$ 고속 피드: $V_{max} = 50 m/min$ 수명: $L_t = 25000 h$ 가이드 표면 마찰 계수: $\mu = 0.01$

구동 모터: $N_{max} = 3000 \ rpm$ 위치결정 정도: ±0.10/at max. travel

반복 정도: ±0.01 mm

운동 조건

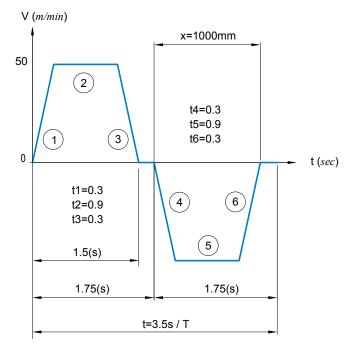


그림35. 운송 장치v-t 도표

결정해야 할 항목

- 스크류 공칭 외경, 리드
- 정도 규격
- 너트 타입
- 구동 모터

스크류 공칭 외경, 리드 선정

리드(l)

모터의 최대 회전 속도

$$l \ge \frac{V_{max}}{N_{max}} = \frac{50000}{3000} = 17 \ (mm)$$

◎리드는 18mm 이상.

(PMI 카탈로그에 따라: 상세한 분석에는 8 과 10mm 선정)

리드가 20 mm인 경우 모터가 2500 rpm 로 회전 시 최대 고속 피드는 50m/min 입니다.

· 나사축 길이의 초기 선정

L = 최대 이동거리 + 너트 길이 = 비나사부의 길이

- = 1000 + 100 + 100 = 1200 (mm)
- 최대 이동거리 + 너트 길이 = 비나사부의 길이

볼스크류 샤프트 직경은 고속 피드의 임계 회전 속도로 결정될 수 있습니다.

지지 엔드는 고정-지지입니다.따라서 허용 회전 속도:

$$n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{Elg}{\gamma A}} = f \frac{dr}{L^2} \times 10^7$$

$$\implies dr \ge \frac{n \times L^2}{f} \times 10^7$$

L = 최대 이동거리 + 너트 길이/2 = 비나사부의 길이

= 1000 + 50 + 100 = 1150 (mm)

나사축 지지 모형은 고정-지지입니다 : f = 15.1

 $dr \ge 21.9 (mm)$

고회전 속도가 2500 (rpm)인 경우, 골밑 부위의 직경은22 (mm)이상입니다 ◎따라서 나사축은 25 와 36 mm 사이입니다.

· 서비스 수명 고려:

우선 그림35 (V-t 도표) 분석을 합니다.

속도선은 직선이므로 일정한 가속도로 주기적으로 왕복 운동을 합니다.

최대 속력: $V_{max} = 50 (m/min) = 0.83 (m/s)$

가속 시간 : $t_i = 0.3$ (s)

감속 시간: $t_3 = 0.3$ (s)

a.가속 시 주행거리:

$$x_I = \left(\frac{V_0 + V}{2}\right) \times t = \left(\frac{0 + 0.83}{2}\right) \times 0.3$$

$$= 0.125 (m) = 125 (mm)$$

b 등속도 운행 시 거리

$$x_2 = V \cdot t = 0.83 \times 0.9$$

$$=0.75 \text{ (m)} = 750 \text{ (mm)}$$

c.감속 시 주행거리

$$x_3 = \left(\frac{V_0 + V}{2}\right) \times t = \left(\frac{0.83 + 0}{2}\right) \times 0.3 = 0.125 \ (m) = 125 \ (mm)$$

d. 선분--1

$$a_1 = \frac{V_{max}}{t_1} = \frac{0.833}{0.3} = 2.8 \, (m/s^2)$$

$$F_1 = \mu (W_1 + W_2) \times g + (W_1 + W_2) \times a_1 = 0.01 \times (50 + 25) \times 9.8 + (50 + 25) \times 2.8 = 217 (N)$$

$$N_I = n_{max} / 2 = 2500 / 2 = 1250 (rpm)$$

e. 선분--2

$$F_2 = f = \mu(W_1 + W_2) \times g = 0.01 \times (50 + 25) \times 9.8 = 7.35 (N)$$

 $N_2 = 2500 (rpm)$

f.선분--3

 $F_3 = \mu(W_1 + W_2) \times g + (W_1 + W_2) \times a_3 = 0.01 \times (50 + 25) \times 9.8 + (50 + 25) \times (-2.8) = -203 (N)$

 $N_3 = n_{max}/2 = 2500/2 = 1250 \ (rpm)$

적용된 축방향 하중, 주행 거리, 시간, 평균 회전간의 관계는 다음과 같습니다.

운동	축방향 하중	주행 거리	시간	평균 회전
가속 전진	217	125	0.3	1250
등속 전진	7.35	750	0.9	2500
감속 전진	-203	125	0.3	1250
가속 복귀	-217	125	0.3	1250
등속 복귀	-7.35	750	0.9	2500
감속 복귀	203	125	0.3	1250

g. 평균 하중과 평균 회전 계산:

$$F_{m} = \left(\frac{F_{1}^{3} \cdot n_{1} \cdot t_{1} + F_{2}^{3} \cdot n_{2} \cdot t_{2} + \dots + F_{n}^{3} \cdot n_{n} \cdot t_{n}}{n_{1} \cdot t_{1} + n_{2} \cdot t_{2} + \dots + n_{n} \cdot t_{n}}\right)^{\frac{1}{3}} = \left(\frac{217^{3} \times 1250 \times 0.6 + 7.35^{3} \times 2500 \times 1.8 + 203^{3} \times 1250 \times 0.6}{1250 \times 0.6 + 2500 \times 1.8 + 1250 \times 0.6}\right)^{\frac{1}{3}}$$

= 132.4 (N)

$$N_m = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t} = \frac{1250 \times 0.6 + 2500 \times 1.8 + 1250 \times 0.6}{3.5} = 1714 \ (rpm)$$

h. 수명 계산

$$L_t = \left(\frac{Ca}{F_m \times f_w}\right)^3 \times \frac{1}{60N_m} \times 10^6 = \left(\frac{1170 \times 9.8}{132.4 \times 2.5}\right)^3 \times \frac{1}{60 \times 1714} \times 10^6$$

= 404000 ≥ 25000 (hours) 따라서 설계 요건과 일치합니다

정밀도 선정

±0.1/1000 mm (최대 이동 거리)의 위치 정밀도[A1-6]

◎정밀도 : C5

 $E = \pm 0.040/1000$

e = 0.027

볼스크류 타입 선정

◎운전 조건을 고려하면 유효 회전 A1을 선정합니다.

다음의 타입 선정:

R25-20A1-FSWE-1000-1160-0.018

나사축 지지 모형은 고정-지지입니다.

구동 모터 선정

<필요한 사양>

- 1.최대 회전 속도 3000 (rpm)
- 2. 최대 회전 속도에 필요한 시간 0.30 sec
- 관성
- a. 나사축:

$$J_{SH} = \frac{\pi \rho}{32g} \times D^4 \times L = \frac{\pi \times 7.8 \times 10^3}{32 \times 980} \times 2.5^4 \times 120 = 0.0037 \ (kgf \cdot cm \cdot sec^2)$$

b. 이송 장치:

$$J_w = \frac{W}{g} \left(\frac{l}{2\pi}\right)^2 = \frac{25+50}{980} \left(\frac{2}{2\pi}\right)^2 = 0.0078 \ (kgf \cdot cm \cdot sec^2)$$

c. 커플링:

 $J_C = 0.0005 (kgf \cdot cm \cdot sec^2)$

d. 총 관성:

$$J_{L} = J_{sh} + J_{w} + J_{C} = 0.012 \ (kgf \cdot cm \cdot sec^{2})$$

• 구동 토오크

a. 등속 시:

$$T_1 = \frac{F_2 \times l}{2\pi \times \eta} = \frac{7.35 \times 2}{2\pi \times 0.9} = 2.6 = 3.00 \ (N \cdot cm)$$

 $\eta = 0.9$

b. 가속 시

$$T_2 = T_1 + J\dot{w} = T_1 + (J_L + J_M) \times \frac{2\pi n}{60t_1} = 3 + (0.009 + 0.01) \times 9.8 \times \left(\frac{2\pi \times 2500}{60 \times 0.3}\right) = 166 \ (N \cdot cm)$$

c. 감속 시

$$T_3 = T_1 - J\dot{w} = T_1 - (J_L + J_M) \times \frac{2\pi n}{60t_3} = 3 - (0.009 + 0.01) \times 9.8 \times \left(\frac{2\pi \times 2500}{60 \times 0.3}\right) = -160 \ (N \cdot cm)$$

• 구동 모터 선정

<조건 선정>

a.최대 회전 속도------*N_{max}*≥3000 (*rpm*)

b.정격 토오크 -----T_M > T_I

c.로터 관성----- $J_M \ge J_i / 3$

구동 모터에 필요한 사양은 상기의 조건에 따라 결정됩니다.

◎모터 사양:

출력 $W_{M} = 400 (W)$

최대 회전 속도 $N_{max} = 3000 (rpm)$

로터 관성 $T_{M} = 1.27 (N.m)$

로터 관성 $J_M = 0.01 \ (kgf.\ cm.\ sec^2)$

• 유효 토오크

$$T_{rms} = \sqrt{\frac{T_2^2 \times t_a + T_1^2 \times t_b + T_3^2 \times t_c}{t}} = \sqrt{\frac{166^2 \times 0.6 + 3^2 \times 1.8 + 160^2 \times 0.6}{3.5}} = 95 \ (N \cdot cm) < 127 \ (N \cdot cm)$$

따라서 설계 요건과 일치합니다

• 최대 회전 속도에 필요한 시간.

$$t_a = \frac{J}{T_M - T_I} \times \frac{2\pi n}{60} \times f$$

여기서

J : 총 관성

$$T_{M}' = 2 \times T_{M}$$

 T_r : 회전 토오크 (고속)

f: 안전 계수(이 경우 1.4 선택)

$$t_a = \frac{0.009 + 0.01}{2 \times 127 \times 3} \times 9.8 \times \frac{2\pi \times 2500}{60} \times 1.4 = 0.27$$
(s) < 0.3 (s) 설계 요건과 일치합니다.

볼스크류의 응력 계산.

$$\sigma = \frac{F}{A} = \frac{F_{max}}{\pi dr^2/4} = \frac{217 \times 4}{\pi \times 22425^2} = 0.61 \ N/mm^2 = 6.1 \times 10^5 \ N/m^2$$

dr= 25+1-4.762=21.238 (mm) (dr 나사축 나사 골지름)

$$\tau = \frac{T \times r}{I} = \frac{1660 \times 12.5}{24827} = 0.84 \ N/mm^2 = 8.4 \times 10^5 \ N/m^2$$

 $T_{max} = T_L = 166 (N \cdot cm) = 1660 (N \cdot mm)$

$$J = \frac{\pi dr^4}{32} = \frac{\pi (22.425^4)}{32} = 24827 \ (mm^4)$$

$$\sigma_{max} = \sqrt{\sigma^2 + \tau^2} = 0.10 \times 10^8 \ N/m^2$$

50CrMo4 스틸 인장 강도 1.5×10⁸ N/m² 항복 강도 0.9×10⁸ N/m²

따라서 선택한 볼스크류는 안전합니다.

나사축의 좌굴 하중 계산

$$P = \alpha \frac{\pi^2 nEI}{L^2} = m \frac{dr^4}{L^2} \times 10^3$$
$$= 10.2 \times \frac{22.425^4}{1160^2} \times 10^3$$
$$= 1917 (kgf) > F_{max}(22.14 kgf)$$

따라서 선택한 볼스크류는 안전합니다.

수직 운송 장치

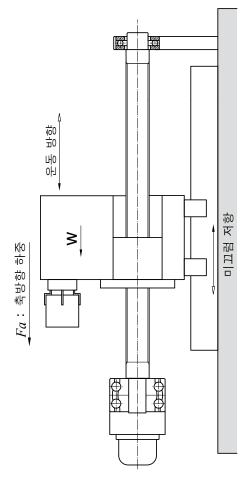


그림36. 수직 운송 장치

설계 조건

테이블 중량: $W_1 = 300 \, kg$ 작업물 중량: $W_2 = 50 \ kg$ 최대 이동거리: $S_{max} = 1500 \ mm$

고속 피드: $V_{max} = 15 \times 103 mm/min$

수명: $L_t = 20000 \ hours$

가이드 표면 마찰 계수: $\mu = 0.01$

구동 모터: $N_{max} = 1500 \ rpm$

위치결정 정도: ±0.3 mm

반복 정밀도: ±0.8/1500 mm 스크류축 조립: 고정-지지 환경: 먼지가 있음

운동 조건

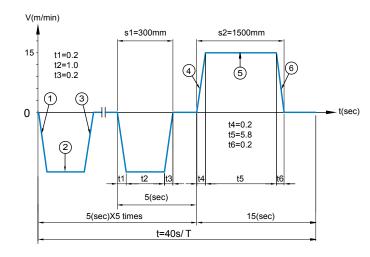


그림37. 운송 장치' v-t 도표

결정해야 할 항목

- 정도 규격
- · 나사축 외경, 리드
- 구동 모터

정도 규격 선정

설계 조건에 따라: 필요한 위치결정 정도±0.8/1500mm

$$\frac{\pm 0.8}{1500} = \frac{\pm 0.16}{300}$$

표2[A1-6]누적 기준리드 편차 (±E) 및 총 상대 변동(e) 참조

정도 규격: C7

E=±0.05/300 mm

◎운송 장치로 전조 볼스크류 사용 가능.

나사축 외경, 리드 선정

· 리드(l):

모터의 최대 회전 속도

$$l \ge \frac{V_{max}}{N_{max}} = \frac{15000}{1500} = 10 \ (mm)$$

◎리드 10*mm* 이상

(PMI 카탈로그에 따라: 상세한 분석에는 10 mm 선정)

• 허용 축방향 하중 :

설정은 플러스

a. 가속력 (아래쪽)1

$$a_1 = \frac{V_{max}}{t_1} = \frac{15000}{60 \times 0.2} = 1250 \ (mm/s^2) = 1.25 \ (m/s^2)$$

$$f = \mu (W_1 + W_2) \times g = 0.01(300 + 50) \times 9.8 = 35 (N)$$
 (Friction)

$$F=ma \rightarrow F_1=(W_1+W_2)\times g-f-(W_1+W_2)\times a_1=2958 \ (N)$$

b.등속력 (아래쪽)2

$$F=0 \rightarrow F_2=(W_1+W_2) \times g-f=3395 (N)$$

c.감속력 (아래쪽)3

$$F = ma \rightarrow F_3 = (W_1 + W_2) \times g - f + (W_1 + W_2) \times a_3 = 3833 (N)$$

d.가속력 (위쪽)4

$$F = ma \rightarrow F_4 = (W_1 + W_2) \times g + f + (W_1 + W_2) \times a_4 = 3903 (N)$$

e.등속력 (위쪽)5

$$F=0 \rightarrow F_5=(W_1+W_2)\times g+f=3465 \ (N)$$

f.감속력(위쪽)6

$$F = ma \rightarrow F_6 = (W_1 + W_2) \times g + f - (W_1 + W_2) \times a_6 = 3028 (N)$$

그래서

$$Fa_{max} = F_4 = 3903 (N)$$

• 좌굴 하중 :

$$P = \alpha \frac{\pi^2 nEI}{L^2} = m \frac{dr^4}{L^2} \times 10^3$$

$$dr = \left(\frac{P \times L^2}{m} \times 10^{-3}\right)^{1/4} = \left(\frac{3903 \times 1800^2}{9.8 \times 10.2} \times 10^{-3}\right)^{1/4}$$

= 19 (mm)

나사축 골밑 부위의 직경은 19 mm 이상.

◎따라서 나사축 직경은 25와 50mm 사이입니다.

• 나사축의 길이 :

L = 최대 이동거리 + 너트 길이 + 비나사부의 길이

$$= 1500 + 100 + 200 = 1800 (mm)$$

세장비: 60 이하

$$D \ge \frac{L}{60} = \frac{1800}{60} = 30 \ (mm)$$

◎따라서 나사축 직경은 32 와 50mm 사이입니다.

• 허용 회전 속도 :

지지 엔드는 고정-지지입니다.따라서 허용 회전 속도입니다: :

$$n = \alpha \times \frac{60\lambda^2}{2\pi L^2} \sqrt{\frac{EIg}{\gamma A}} = f \frac{dr}{L^2} \times 10^7$$

$$\Rightarrow dr \ge \frac{n \times L^2}{f} \times 10^7 \text{ (} f=15.1, L=1800 \text{)}$$

I최대 회전 속도가 1500 rpm 인 경우 나사축 골밑 부위의 직경은 30mm 이상.

◎따라서 나사축 직경은 36 와 50mm 사이입니다.

• 기본 동정격 하중 계산 :

운동	축방향 하중 (N)	평균 회전 (<i>rpm</i>)	시간 (sec)
가속 (아래)	F ₁ =2958	n ₁ =750	<i>t</i> ₁ =1.0
등속 (아래)	F ₂ =3395	n ₂ =1500	<i>t</i> ₂ =5.0
감속 (아래)	F ₃ =3833	n ₃ =750	<i>t</i> ₃ =1.0
가속 (위)	F₄=3903	n₄=750	t₄=0.2
등속 (위)	F₅=3465	<i>n</i> ₅=1500	<i>t</i> ₅=5.8
감속 (위)	F ₆ =3028	n ₆ =750	t ₆ =0.2

평균 하중

$$F_m = \left(\frac{F_1^3 \cdot n_1 \cdot t_1 + F_2^3 \cdot n_2 \cdot t_2 + \dots + F_n^3 \cdot n_n \cdot t_n}{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}\right)^{\frac{1}{3}} = 3436 \ (N)$$

평균 회전

$$N_m = \frac{n_l \cdot t_l + n_2 \cdot t_2 + \dots + n_n \cdot t_n}{t} = 450 \ (rpm)$$

설계 조건에 따라:

필요한 수명 20000 시간, fw =1.2

$$L_t = \left(\frac{Ca}{F_m \times f_w}\right)^3 \times \frac{1}{60N_m} \times 10^6$$

$$Ca = (60N_m \times L_t)^{1/3} \times F_m \times f_w \times 10^{-2} = 33576 \ (N) = 3426 \ (kgf)$$

◎필요한 수명 > 20000 (시간)인 경우 Ca has to be>3426(kgf)

• 기본 동정격 하중 계산 :

$$Co=F_{max} \times f_s = 7806 \ (N) = 800 \ (kgf)$$

 $f_s = 2.0$

 \bigcirc Co has to be 800(kgf)

◎볼스크류 타입:

나사축 직경: 40-10B2-FSWW

리드: 40 (mm)

하중: 10 (mm)

기본 동정격 하중: 3520 (kgf)

구동 모터 선정

- <필요한 사양>
- 1. 최대 회전 속도1500 mm/min
- 2. 최대 회전 속도에 필요한 시간 0.2 sec.
- 관성
- a. 나사축 :

$$GD_S^2 = \frac{\pi \rho}{8} \times D^4 \times L = \frac{\pi \times 7.8 \times 10^{-3}}{8} \times 4^4 \times 180 = 141.1 \text{ (kgf} \cdot \text{cm}^2\text{)}$$

b. 이송 장치:

$$GD_w^2 = W\left(\frac{l}{\pi}\right)^2 = (300+50) \times \left(\frac{1.0}{\pi}\right)^2 = 192.5 (kgf \cdot cm^2)$$

c. 커플링 :

$$GD_J^2=1.0 (kgf \cdot cm^2)$$

d. 총관성:

$$GD_L^2 = GD_S^2 + GD_w^2 + GD_L^2 = 334.6 \text{ (kgf} \cdot \text{cm}^2\text{)}$$

- 구동 토오크 :
- 1.마찰 토오크
- a.가속 (아래쪽)1

$$T_1 = \frac{Fa \times l}{2\pi \times \eta} = \frac{2950 \times 1.0}{2\pi \times 0.9} = 520 \ (N \cdot cm)$$

b.등속 (아래쪽)2

$$T_2 = \frac{Fa \times l}{2\pi \times \eta} = \frac{3395 \times 1.0}{2\pi \times 0.9} = 600 \ (N \cdot cm)$$

c.감속 (아래쪽)3

$$T_3 = \frac{Fa \times l}{2\pi \times \eta} = \frac{3833 \times 1.0}{2\pi \times 0.9} = 680 \ (N \cdot cm)$$

- d.가속 (위쪽)4
- $T_4 = 690 \ (N \cdot cm)$
- e.등속 (위쪽)5
- $T_5 = 610 \ (N \cdot cm)$
- f.감속 (위쪽)6
- $T_6 = 540 \ (N \cdot cm)$
- 2.예압 토오크

$$T_P = k \times \frac{Fao \times l}{2\pi}$$

- \therefore Fao = 0 : $T_{P} = 0$
- 3.가속에 필요한 토오크

$$T_7 = J \cdot w$$

$$= (J_L + J_M) \times \frac{2\pi n}{60t_I} = \frac{(178 + 120)}{4 \times 980} \times \left(\frac{2\pi \times 1500}{60 \times 0.2}\right) = 59.7 \quad (kgf \cdot cm) = 585 \quad (N \cdot cm)$$

$$GD_M = 120 (kgf \cdot cm^2)$$

4.총 토오크

a.가속 (아래쪽)1

$$T_{kI} = T_I + T_7 = 520 + 585 = 1105 \ (N \cdot cm)$$

b.등속 (아래쪽)2

$$T_{t1} = T_2 = 600 \quad (N \cdot cm)$$

c.감속 (아래쪽)3

$$T_{g1} = T_3 + T_7 = 680 + 585 = 1265 \ (N \cdot cm)$$

d.가속 (위쪽)4

$$T_{k2} = T_4 + T_7 = 690 + 585 = 1275 \ (N \cdot cm)$$

e.등속 (위쪽)5

$$T_{t2} = T_5 \qquad = 610 \quad (N \cdot cm)$$

f.감속 (위쪽)6

$$T_{g2} = T_6 + T_7 = 540 + 585 = 1125 \ (N \cdot cm)$$

최대토오그는 등가속상승 시.

$$T_{max} = T_{k2} = 1275 \ (N \cdot cm)$$

• 구동 모터 선정 :

<선정 조건>

a.최대 회전 속도------*N_{max}*≥1500 (*rpm*)

b.정격 토오크----- $T_M = T_{rms}$

c.로터 관성------*J*_M≧*J*_L / 3

구동 모터에 필요한 사양은 위의 조건에 따라 결정합니다.

◎모터 사양:

출력 $W_M = 2000 (W)$

최대 회전 속도 $N_{max} = 1500 (rpm)$

정격 토오크 $T_M = 13 (N.m)$

로터 관성 $GD_M^2 = 120 (kgf.cm^2)$

• 유효 토오크

$$\begin{split} T_{\textit{rms}} &= \sqrt{\frac{T_{k1}^2 \times t_1 + T_{i1}^2 \times t_2 + T_{g1}^2 \times t_3 + T_{k2}^2 \times t_4 + T_{i2}^2 \times t_5 + T_{g2}^2 \times t_6}{t}} \\ &= \sqrt{\frac{1105^2 \times 1.0 + 600^2 \times 5 + 1265^2 \times 1 + 1275^2 \times 0.2 + 610^2 \times 5.8 + 1125^2 \times 0.2}{20}} \end{split}$$

= 606 (N·cm) < 1300 (N·cm) 설계 요건과 일치합니다.

볼스크류의 응력 계산

$$\sigma = \frac{F}{A} = \frac{F_{max}}{\pi dr^2/4}$$

$$= \frac{3903 \times 9.8 \times 4}{\pi \times 35.05^2} \qquad dr = 40 + 1.4 - 6.35 = 35.05 (mm)$$

$$= 4.04 N/mm^2$$

$$= 4.04 \times 10^6 N/m^2$$

$$\tau = \frac{T \times r}{J} \qquad T_{max} = T_L = 1275 (N \cdot cm) = 12750 (N \cdot mm)$$

$$= \frac{12750 \times 20}{148167} \qquad J = \frac{\pi dr^4}{32} = \frac{\pi (35.05^4)}{32} = 148167 (mm^4)$$

$$= 1.72 N/mm^2$$

$$= 1.72 \times 10^6 N/m^2$$

$$\sigma_{max} = \sqrt{\sigma^2 + \tau^2}$$

$$= 4.39 \times 10^6 N/m^2$$

50CrMo4 스틸 인장 강도 *1.1×10⁸ N/m*² 항복 강도 *0.9×10⁸ N/m*² 따라서 선정한 볼스크류는 안전합니다.

나사축의 좌굴 하중 계산

$$P = \alpha \frac{\pi^2 nEI}{L^2} = m \frac{dr^4}{L^2} \times 10^3$$
$$= 10.2 \times \frac{35.05^4}{1800^2} \times 10^3$$
$$= 4751 (kgf) > F_{max}(398 kgf)$$

◎따라서 선정한 볼스크류는 안전합니다.

PMI볼스크류 중공 냉각 시스템

PMI 중공 냉각 시스템(Hollow Cooling System)은 고속 볼스크류에 특히 적합합니다. 볼스크류가 주행 시 볼과 홈간의 마찰로 발생하는 열을 분산하여 열변형을 최소화하며 위치결정 정도를 보장합니다.

중공 냉각 시스템 소개

중공 냉각 시스템은PMI(그림38)에 의해 설계되었습니다. 볼스크류의 중공 구멍에 냉각 파이프를 사용합니다. 중공 구멍은 모든 볼스크류를 관통해 있고 한쪽 엔드는 오일 씰(oil seal)로 막혀있습니다(PMI 특허). 냉각제는 냉각 파이프로 들어가 냉각 파이프 엔드로 흐릅니다. 냉각제는 냉각 온도를 떨어뜨리기 위해 다시 냉각 장치에 흡수되고, 완전 순환으로 냉각 파이프에 다시 펌핑됩니다.

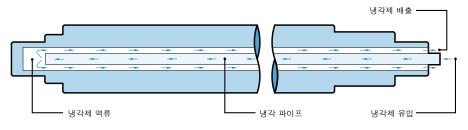


그림38. 중공 냉각 도표

특허

중공 냉각 시스템

특징 :

- (1) 볼스크류 열팽창을 완벽하고 효과적으로 제어.
- (2) 단순한 설계와 구조로 비용 절감.

그림39. 중공 냉각 시스템

냉각액 유입구

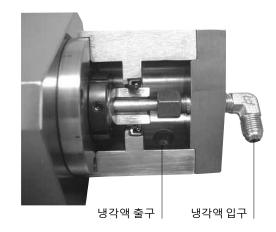


그림40. 냉각액 유입구

엔드 실링

특징: 수월한 설치, 분해, 유지관리

냉각 파이프 지지물 설치

냉각 파이프를 지지합니다. 볼스크류에 닿지 않도록 하십시오.

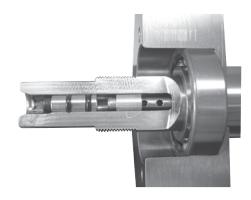


그림41. 엔드 실링 구조

열 제어 테스트

테스트 조건

나사 외경: Ø 40 mm

리드: 10 mm

회전 속도: 1000 min-'

속도: 10 m/min 하중: 400 kgf

슬라이드웨이:경화 방식

테스트 결과

테스트 결과, *PMI* 설계 중공 냉각 시스템은 볼스크류의 열팽창을 유효하게 제어하는 것으로 입증되었습니다. 따라서 고정밀 공작기계에 아주 유효한 설계의 시스템입니다.

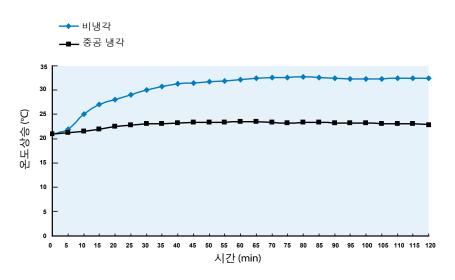


그림42. 테스트 법칙

<u>너트 냉각</u>

설계원리

너트제작에 많은 순환냉각통로가 있으므로 냉각액체가 통과될때 볼 마찰시 발생하는 열와 열팽 창 현상을 억제할 수 있으므로 볼스크류 고속으로 운행시에 최고속도와 정밀도를 보장 할 수 있습니다.

형식 A - 순환형식 냉각

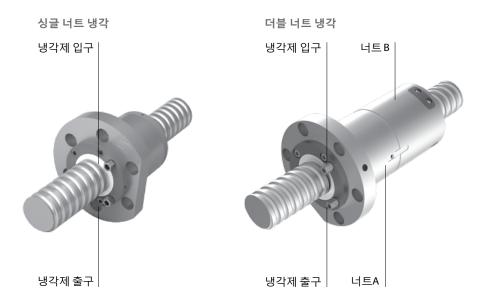


그림43. 싱글,더블너트 냉각

표21 순환형식 냉각너트-테스트 참고수치

규격	R45-12T5-FDDA-1274-1569-0.018
운행거리(mm)	690
속도(m/min)	7.2
평균회전속도(rpm)	523.3
가속도(m/s²)	5
예압량(kgf)	392
작업대무게(kgf)	200
설치 방법	고정-지지
냉각제	Mobil Velocite oil no.3 (ISO VG 2)
냉각제흐름량(L/min)	3.1
냉각제온도 (°C)	실온 ±0.5℃

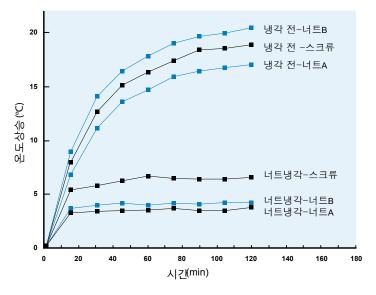


그림44. 실험결과

형식 B - 직통식 냉각

직통식 냉각 너트순환 설계는 냉각액이 곧바로 냉각시스템에 유입이 되는 설계로 기존 순환 권수형보다 더 나은 냉각 효과를 얻을 수 있다.

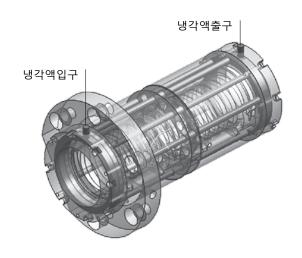


그림45. 직통식 냉각 그림

제품특성

위치정도 및 안정성 향상

스크류 온도 상승을 억제하여 열변위는 감소되어 장비의 고속화 및 위치정도가 향상된다.

워밍시간 단축

볼스크류는 단시간내에 안정적인 온도를 도달하여 장비 워밍 시간이 단축된다.

윤활유성능

볼스크류는 안정적인 온도를 유지하므르써 윤활유지가 고온으로 인한 유지악성화를 방지할 수 있다.

표22 순환형과 직통식 냉각너트-테스트 참고 수치

규격	R45-12T5-FDDA-1274-1569-0.018 R45-12T5-FDDB-1274-1569-0.018
운행 스트로크 (mm)	690
유입 (m/min)	7.2
평균속도 (rpm)	550
가속도 (m/s²)	5
예압 력 (kgf)	392
작업대중량 (kg)	250
설치 방법	고정-지지
냉각액	Mobil Velocite oil no.3 (ISO VG 2)
냉각액 흐름 량 (L/min)	3.1
냉각액온도 (°C)	실온 ±0.5℃

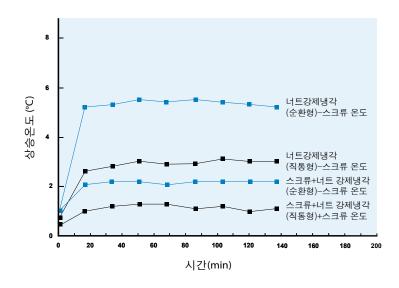


그림 46.순환혁과직통식 비교

부속품

규격정의

예: R45-12T5-FDDA-700-800-0.008

A(순환형 냉각)

B (직통형 냉각)

냉각너트응용

CNC머신/정밀전용장비/고속전자생산설비/의학장비

고방진 볼스크류

특수 환경(철찌꺼기,나무찌꺼기 등 이물질)에 적용되는 볼스크류로,외부이물질이 너트 내부적으로 유입되는 것을 방지하여 스크류 수명을 연장한다.

고방진부속품을 개발하면서 스크류 특수 홈 가공 설계로 와이어씰 내부의 고방진씰은 나사 선표면에 밀착하여 운행하면서 찌꺼기 배출 및 방진의 두가지 효능을 가지고 있다.

형식 A2 -고무오일씰 스크레이퍼

볼스크류 와이어 씰은 특수 설계하여 여러겹 접촉하는 방식으로 우수한 방진 능력을 발휘한다.

스크류 나사선 볼록 접촉형과 스크류 바깥쪽 간섭 부분을 이용하여 나무 찌꺼기와 분진이 너트 내부 유입을 방지한다.

와이어씰 립 부분의 특수 설계로 나사선 표면을 완전히 접촉하여 찌꺼기 배출과 방진 두가지 효능이 있다.

그림47. 고무오일씰 스크레이퍼

표23 고방진 측정 조건

규격	R40-10-FSVE								
스트로크	300 <i>mm</i> (편도)								
모터 회전수	150 <i>rpm</i>								
측정 환경	나무 찌꺼기 자동순환 시스템								
분진 최소 사이즈	0.01 <i>mm</i> 이하								

그림48. 방진스크레이퍼 테스트 비교

형식 A3 - 얇은 스크레이퍼

볼스크류 방진 씰 구조를 설계하여 예압토오크와 온도상승 영향을 주지 않는 상황에 접촉형식의 스크레이퍼를 사용하여 윤환유지의 품질 지속성을 대폭 상승 시켰다.

윤활유의 누수 및 휘발을 방지하여 환경 청결을 실현한다.

강성이 높아졌으며 작은 찌꺼기 유입과 금속 분진 유입을 방지하여 수명연장 효능이 있는 얇은 스크레이퍼 설계이다. 발열점이 낮고 토오크 낮은 얇은 와이어씰 적용하여 스크류 토오크 증가는 대략 1~2kgf-츠(축경 40mm) 또한 구동토오크 영향은 극히 적다.

스크류 온도 상승에 있어 얇은 스크레이퍼 적용과 기존 비접촉 스크레이퍼 적용을 비교하였을 때 온도 상승에 1.5~2℃ 억제 작용을 한다.

그림50. 얇은 스크레이퍼 온도 상승 비교

규격 정의

예: R 32-10 B2-FSVE-600-700-0.008 A2

A2 (정밀급+고무오일 스크레이퍼) A3 (정밀급+얇은 스크레이퍼홈)

B2 (전조급+고무오일 스크레이퍼) B3 (전조급+얇은 스크레이퍼홈)

고방진 볼스크류 응용

나무가공장비, 레이저가공기, 고정밀운송설비, 장비ARM혹은 일반 공작기계에 방진가공환 경 적용 필요한 장비

볼리테이너

구조와 특성

볼 리테이너를 적용한 스크류는 볼 사이의 마찰은 소멸되였고 윤활이 잘 유지되여 저소음 구동이 실현되었다. 보수기간을 연장하여 우수한 유동성을 가진다.

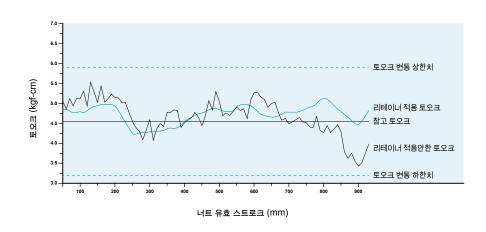
효능

저소음, 좋은 음질, 고정밀도

볼과 볼 사이의 리테이너를 장착하여 볼 상호간의 접촉 및 간섭 소리가 발생하지 않는다.

볼 상호간의 접촉이 없으므로 마찰로 인한 발열이 감소되었으며 이 또한 스크류 발열을 감소 시켜 정도가일정한 범위를 유지하도록 한다.

보수기간 연장


볼 사이의 마찰은 소멸되었고. 리테이너상의 유지 보관 홈 설계로 윤활 보존성이 대폭 상승되었다. 이로 인해 장기간 운행에도 유지 추가 공급을 하지 않아도 된다.

훌륭한 구동성

볼 사이의 리테이너로 인해 볼 상호 마찰은 소명되어 토오크 특성 향상 및 예압 토오트 변화는 감소되며. 저속 운행에도 훌륭한 등속성을 발휘한다.

이로 인해 우수한 위치정도를 얻는다.

정밀 연삭 볼스크류

자동윤활장비

PMI 자동윤활장치는 오일 고함량 섬유재질의 윤활 장치다.

고밀도 섬유는 적절한 윤활유를 볼스크류 운행면에 공급해 주어 볼과 운행면 사이에 유막을 형성케 한다. 이로 인해 윤활성 상승 및 보수 주기를 연장 할 수 있다.

특성

보수시간 연장

일반 볼스크류에 사용되는 윤활유지는 왕복 운행을 하면서 소모가 된다. 윤활장치에 적절시기에 손실된 유지를 공급하여 부수시간을 연장한다.

자동윤활본체

환경오염방지

자동윤활장치는 고밀도 섬유체로 적절량의 윤활유를 공급한다. 전체 윤활 순환시스템을 사용 중에서 과다량의 윤활유 낭비는 없게 된다. 이로 인한 주변 황경 오염 현상은 발생되지 않는다.

원가 절약

자동윤활장치는 윤활유 감소 및 낭비 감소

윤활 시스템 장치를 추가로 설치 장착할 필요가 없다.

따라서 전체 장비로 봤을 때 원가 절감이 될 수 있다.

적용 규격

내순환 시리즈 외순환시리즈,고리드 시리즈.엔드 디플렉터 시리즈.

정밀 연삭 볼스크류

너트 내부 볼 순환 너트

특징

내부 볼 순환 너트의 장점은 외부 직경이 외부 볼 순환 너트의 직경보다 작다는 것입니다. 따라서 볼스크류 설치 공간이 한정된 기계에 적당합니다.

최소한, 나사축의 한쪽 엔드에는 완전 나사부가 있어야 합니다. 또한 이 완전 나사부 옆의 받침대 부위는 나사 축 직경보다 더 작은 직경이어야 합니다. 이는 나사축에 볼너트를 조립 작업을 용이하게 하려면 반드시 필요합니다.

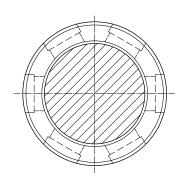
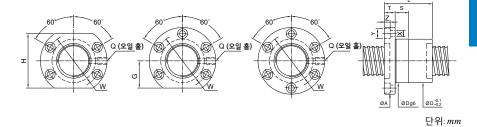
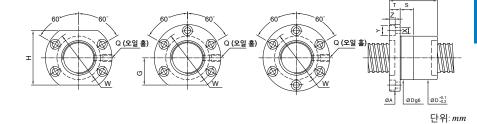



그림1. 내부 볼 순환 측면

FSIC

FSIC

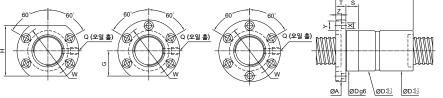
단위: mm																	단위	2 : mm
스크루	루크기			기본 정격 하	중(kgf)	너	트		픨	랜지			피트	볼트			오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
	3	2	3	260	460	26	37	46	10	36	-	-	10	4.5	8	4.5	M6×1P	13
14	4	2.381	3	420	805	26	42	46	10	36	20	40	10	4.5	8	4.5	M61D	14
14	4	2.778	4	840	1870	20	47	40	10	30	20	40	10	4.5	0	4.5	M6×1P	21
	5	3.175	3	720	1010 26	42	46	10	36	20	40	10	4.5	8	4.5	M6×1P	16	
	4	2.381	3	435	920	28	42	48.5	10	39	20	40	10	4.5	8	4.5	M6×1P	16
16	5	3.175	3	765	1240	30	42	49	10	39	20	40	10	4.5	8	4.5	M6×1P	18
10)	3.173	4	980	1650	30	49	49	10	39	20	40	10	4.5	8	4.5	MOXIP	23
	6	3.175	4	980	1650	30	55	54	12	40	20	40	12	5.5	9.5	5.5	M6×1P	23
	4	2.381	4	600	1530	34	44	60	12	48	22	44	12	5.5	9.5	5.5	M6×1P	25
			3	860	1710		47											21
	5	3.175	4	1100	2280	34	53	57	12	45	20	40	12	5.5	9.5	5.5	M6×1P	28
20			6	1560	3420		62											42
	6	3.969	3	1080	2050	34	53	57	12	45	20	40	12	5.5	9.5	5 5	M6×1P	22
	U	3.909	4	1380	2730	34	61	37	12	43	20	40	12	3.3	9.3	3.3	MOXIF	28
	10	3.175	3	860	1710	36	66	57	12	45	20	40	12	5.5	9.5	5.5	M6×1P	21
	4	2.381	3	500	1440	40	40	63	12	51	22	44	15	5.5	9.5	5.5	M8×1P	23
			3	980	2300		47											26
	5	3.175	4	1250	3070	40	53	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	33
			5	1520	3830		57											42
	6	3.969	3	1275	2740	40	53	63.5	12	51	22	44	15	5.5	9.5		M8×1P	26
	0	3.909	4	1630	3650	40	61	03.3	12	31	22	44	13	3.3	9.3	3.3	MOXIF	34
25	8	3.969	4	1630	3650	40	69	63.5	12	E 1	22	44	15	5.5	0.5		M8×1P	34
	0	3.909	5	1970	4560	40	77	03.5	12	51	22	44	15	5.5	9.5	5.5	WOXIP	43
		3.175	3	980	2300	38	70	68	15	55	26	52	15	6.6	11	6 5	M8×1P	26
		3.173	4	1250	3070	30	81	00	15	33	20	32	15	0.0	11	0.5	WOXIP	33
	10		3	1620	3205		80											27
		4.762	4	2070	4270	42	85	68.5	15	55	26	52	15	6.6	11	6.5	M8×1P	35
			5	2510	5340		91											44
28	6	3.175	3	1030	2630	43	50	68	12	55	26	52	15	6.6	11	6.5	M8×1P	28
28	10	3.175	4	1320	3510	45	77	73	12	60	30	60	15	6.6	11	6.5	M8×1P	37



스크루	루크기			기본 정격 히	중(kgf)	너	트	플랜지			피트		볼트		오일홀	강성		
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	Т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
	4	2.381	3 5	560 870	1840 3070	43	40 49	68	15	55	26	52	15	6.6	11	6.5	M8×1P	28 45
	5	3.175	3 4 6	1095 1400 1980	3060 4080 6120	48	47 53 62	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	31 41 60
32	6	3.969	3 4 6	1500 1920 2720	3750 5000 7500	48	53 61 73	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	32 43 63
	8	4.762	3 4	1820 2330	4230 5640	50	68 77	83	16	66	32	64	15	6.6	11	6.5	M8×1P	32 43
	10	6.35	3 4	2605 3340	5310 7080	54	80 90	88	16	70	34	68	15	9	14	8.5	M8×1P	33 45
	12	6.35	3	2605	5310	50	86	88	16	70	34	68	15	9	14	8.5	M8×1P	33
	5	3.175	4	1490	4690	52	56	88	16	70	34	68	15	9	14		M8×1P	46
36	8	4.762	4	2530	6630	55	73	88	16	72	29	58	15	9	14	8.5	M8×1P	48
	10	6.35	3 4	2810 3600	6210 8280	58	78 89	98	18	77	36	72	20	11	17.5	11	M8×1P	37 49
	5	3.175	4 5 6	1575 1910 2230	5290 6610 7940	55	56 61 65	88.5	16	72	29	58	15	9	14	8.5	M8×1P	49 61 73
	6	3.969	3 4 6	1660 2130 3020	4810 6410 9620	55	56 65 77	88.5	16	72	34	68	15	9	14	8.5	M8×1P	39 51 75
40	8	4.762	3 4 6	2120 2720 3850	5720 7620 11430	60	64 77 94	93	16	76	36	72	20	9	14	8.5	M8×1P	40 52 77
	10	6.35	3 4 5	3010 3850 4670	7100 9470 11830	64	83 93 99	106	18	84	43	86	20	11	17.5	11	M8×1P	41 53 67
	12	6.35	3 4 5	3010 3850 4670	7100 9470 11830	63	82 100 108	106	18	84	43	86	20	11	17.5	11	M8×1P	41 53 67
		7.144	3 4	4010 5130	9250 12330	70	93 103	110	18	85	45	90	20	11	17.5	11	M8×1P	43 56

FSIC

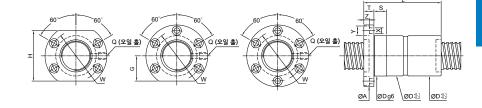
FSIC


																	단위	2 : mm
스크루	루크기			기본 정격 하	·중(kgf)	너트 플랜지					피트 볼트				오일홀	강성		
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Y	z	Q	kgf/ μm
	8	4.762	4	2870	8620	64	72	92	16	75	36	72	15	9	14.5	9	M6×1P	54
45	12	7.144	3	4160	10750	70	86	110	16	90	42	84	20	11	175	11	PT1/8"	48
7.7	12	7.177	4	5330	14330	, 0	99	110	10	50	72	04	20	٠.	17.5	٠.	111/0	62
	16	6.35	3	3220	8200	70	102	110	16	90	42	84	20	11	17.5	11	PT1/8"	45
			4	1730	6760		55											60
	5	3.175	5	2100	8450	66	61	98	16	82	36	72	20	9	14	8.5	PT1/8"	74
			6	2450	10140		65											86
			4	2380	8250		65										PT1/8"	61
	6	3.969	5	2880	10310	66	64	98	16	82	36	72	20	9	14	8.5		76
			6	3370	12380		77											90
			4	3010	9610		79											63
	8	4.762	5	3650	12010	70	84	113	18	90	42	84	20	11	17.5	11	PT1/8"	77
			6	4260	14420		96											92
50			3	3430	9300		83											49
	10	6.35	4	4390	12400	74	93	116	1Ω	94	12	Ω1	20	11	175	11	M8×1P	65
	10	0.55	5	5320	15500	74	99	110	10	24	72	04	20		17.5	''	MOXII	80
			6	6220	18600		114											95
		7.144	4	5520	16330	75	104	121	22	97	47	94	20	14	20	12	PT1/8"	67
	12	7.144	5	6690	20410	/3	117	121	22	97	47	/ 94	20	14	20	13	F11/0	84
		7.938	3	4510	11150	75	99	121	22	07	17	94	20	14	20	12	DT1/Ω"	50
		7.930	4	5770	14870	, ,	111	121	22	97	47	4/ 94	20	14	20	13	3 PT1/8"	60
	16	6.35	3	3430	9300	74	104	116	18	94	42	84	20	11	17.5	11	PT1/8"	49
	20	7.938	3	4510	11150	78	146	121	28	97	47	94	20	14	20	13	PT1/8"	50

스크루	루크기			기본 정격 하	·중(kgf)	너	트			플랜지	ı		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	х	Y	Z	Q	kgf/ μm
	6	3.969	4 6	2610 3700	10550 15830	80	67 80	122	18	100	45	90	20	11	17.5	11	PT1/8"	73 107
	8	4.762	4 6	3375 4780	12200 18300	82	80 96	124	18	102	46	92	20	11	17.5	11	PT1/8"	76 111
63	10	6.35	4 6	5020 7110	16450 24680	85	98 118	132	22	107	48	96	20	14	20	13	PT1/8"	79 116
	12	7.938	4 6	6580 9320	19430 29150	90	111 136	136	22	112	52	104	20	14	20	13	PT1/8"	80 111
	20	9.525	3 4	8490 10870	23610 31480	95	146 156	153	28	123	59	118	20	18	26	17.5	PT1/8"	79 89
	10	6.35	4 5 6	5510 6670 7810	21200 26500 31800	105	98 105 118	151	22	127	57	114	20	14	20	13	PT1/8"	95 118 140
80	12	7.938	4	7500 10620	25700 38550	110	111 136	156	22	132	59	118	20	14	20	13	PT1/8"	98 143
	20	9.525	3	9770 12510	31700 42270	115	146 168	173	28	143	66	132	20	18	26	17.5	PT1/8"	97 127
	10	6.35	3 4 5 6	4760 6090 7380 8630	20090 26790 33490 40190	125	84 95 104 115	171	22	147	67	134	25	14	20	13	PT1/8"	91 120 148 176
100	16	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	140 157 175	205	28	169	73	146	30	18	26	17.5	PT1/8"	140 173 205
	20	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	159 180 200	205	28	169	73	146	30	18	26	17.5	PT1/8"	140 173 205

FDIC

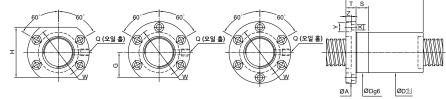
																	단위	2 : mm
스크루	루크기			기본 정격 하	중(kgf)	너	트		플	틀랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	Т	W	G	н	S	х	Y	Z	Q	kgf/ μm
	4	2.381	3	435	920	30	66	48.5	10	39	20	40	10	4.5	8	4.5	M6×1P	31
16	5	3.175	3 4	765 980	1240 1650	30	80 89	49	10	39	20	40	10	4.5	8	4.5	M6×1P	35 47
	5	3.175	3 4	860 1100	1710 2280	34	82 92	57	12	45	20	40	12	5.5	9.5	5.5	M6×1P	43 56
20	6	3.969	3	1080 1380	2050 2730	34	93 107	57	12	45	20	40	12	5.5	9.5	5.5	M6×1P	43 56
	5	3.175	3	980 1250	2300 3070	40	82 92	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	51 67
25	6	3.969	3 4	1275 1630	2740 3650	40	93 107	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	52 68
		3.175	3	980	2300	40	129	68	15	55	26	52	15	6.6	11	6.5	M8×1P	51
	10	4.762	3	1620 2070	3205 4270	42	140 155	68.5	15	55	26	52	15	6.6	11	6.5	M8×1P	53 70
	5	3.175	3 4 6	1095 1400 1980	3060 4080 6120	48	82 92 118	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	63 82 122
	6	3.969	3 4 6	1500 1920 2720	3750 5000 7500	48	93 109 133	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	65 86 125
32	8	4.762	3	1820 2330	4230 5640	50	117 135	83	16	66	32	64	15	6.6	11	6.5	M8×1P	66 86
	10	6.35	3 4	2605 3340	5310 7080	50	139 160	88.5	16	70	34	68	15	9	14	8.5	M8×1P	67 89
	12	6.35	3 5	2605 4040	5310 8850	50	153 203	88	16	70	34	68	15	9	14	8.5	M8×1P	67 110
	5	3.175	4	1490	4690	52	96	88	16	70	34	68	15	9	14	8.5	M8×1P	91
36	8	4.762	4	2530	6630	55	138	88	16	72	34	68	15	9	14	8.5	M8×1P	95
-50	10	6.35	3 4	2810 3600	6210 8280	58	138 159	98	18	77	36	72	20	11	17.5	11	M8×1P	75 98



																	단위	2 : mm
스크루	루크기			기본 정격 하	·중(kgf)	너	트		플	플랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
			4	1575	5290		96											100
	5	3.175	5	1910	6610	55	111	88.5	16	72	29	58	15	9	14	8.5	M8×1P	124
			6	2230	7940		122											147
			3	1660	4810		97											77
	6	3.969	4	2130	6410	55	113	88.5	16	72	34	68	15	9	14	8.5	M8×1P	103
			6	3020	9620		137											149
			3	2120	5720		121											80
40	8	4.762	4	2720	7620	60	134	93	16	76	36	72	20	9	14	8.5	M8×1P	105
40			6	3850	11430		172											154
			3	3010	7100		142											82
	10	6.35	4	3850	9470	64	162	106	18	84	43	86	20	11	17.5	11	M8×1P	107
			5	4670	11830		189											133
		6.35	3	3010	7100	63	154	106	1Ω	Ω/1	13	86	20	11	175	11	M8×1P	82
	12	0.55	5	4670	11830	03	204	100	10	0-	73	00	20	''	17.5	''	MOXII	133
	12	7.144	3	4010	9250	70	160	110	1Ω	25	15	90	20	11	175	11	M8×1P	86
		7.144	4	5130	12330	70	185	110	10	65	43	90	20	'''	17.3	'''	MOXIF	114
	8	4.762	4	2870	8620	64	136	92	16	75	36	72	15	9	14.5	9	M6×1P	109
45	12	7.144	3	4160	10750	70	158	110	16	90	45	90	20	11	17.5	11	PT1/8"	94
	12	7.174	4	5330	14330	70	183	110	10	90	43	90	20	''	17.3	' '	1 11/0	124
	16	6.35	3	3220	8200	70	198	110	16	90	45	90	20	11	17.5	11	PT1/8"	90

FDIC

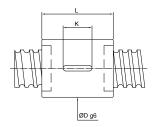
FDIC


																	단위	2 : mm
스크루	루크기			기본 정격 하	·중(kgf)	너	트		į	들랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	н	S	Х	Y	Z	Q	kgf/ μm
			4	1730	6760		96											119
	5	3.175	5	2100	8450	66	111	98	16	82	36	72	20	9	14	8.5	PT1/8"	148
			6	2450	10140		122											174
			4	2380	8250		111											123
	6	3.969	5	2880	10310	66	122	98	16	82	36	72	20	9	14	8.5	PT1/8"	151
			6	3370	12380		142											181
			4	3010	9610		136											125
	8	4.762	5	3650	12010	70	157	113	18	90	42	84	20	11	17.5	11	PT1/8"	155
50			6	4260	14420		174											185
30			3	3430	9300		143											99
	10	6.35	4	4390	12400	74	162	114	10	92	42	84	20	11	17.5	11	PT1/8"	129
	10	0.55	5	5320	15500	/4	189	114	10	92	42	04	20		17.5		F11/6	161
			6	6220	18600		205											191
		7.144	5	6680	20420	75	213	121	22	97	47	94	20	14	20	13	PT1/8"	166
	12	7.938	3	4510	11150	75	171	121	22	07	47	94	20	14	20	13	PT1/8"	101
		7.330	4	5770	14870	/3	195	121	22	71	47	74	20	14	20	13	111/6	132
	16	6.35	3	3430	9300	74	201	114	18	92	42	84	20	11	17.5	11	PT1/8"	99
	20	7.938	3	4510	11150	78	253	121	28	97	47	94	20	14	20	13	PT1/8"	101

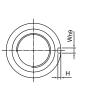
																	단위	위: <i>mm</i>
스크	류크기			기본 정격 히	중(kgf)	너	트		i	플랜지	l		피트		볼트		오일 홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
	6	3.969	4 6	2610 3700	10550 15830	80	120 144	122	18	100	45	90	20	11	17.5	11	PT1/8"	146 217
	8	4.762	4 6	3375 4780	12200 18300	82	141 178	124	18	102	46	92	20	11	17.5	11	PT1/8"	151 222
63	10	6.35	4 6	5020 7110	16450 24680	85	166 209	132	22	107	48	96	20	14	20	13	PT1/8"	158 232
	12	7.938	4 6	6580 9320	19430 29150	90	195 248	136	22	112	52	104	20	14	20	13	PT1/8"	161 236
	20	9.525	3 4	8490 10870	23610 31480	95	255 296	153	28	123	59	118	20	18	26	17.5	PT1/8"	157 207
	10	6.35	4 5 6	5510 6670 7810	21200 26500 31800	105	166 185 209	151	22	127	57	114	20	14	20	13	PT1/8"	190 235 280
80	12	7.938	4	7500 10620	25700 38550	110	195	156	22	132	59	118	20	14	20	13	PT1/8"	196 288
	20	9.525	3 4 6	9770 12510 17720	31700 42270 63410	115	254 297 376	173	28	143	66	132	20	18	26	17.5	PT1/8"	193 254 373
	10	6.35	3 4 5 6	4760 6090 7380 8630	20090 26790 33490 40190	125	143 164 184 210	171	22	147	67	134	25	14	20	13	PT1/8"	173 228 281 334
100	16	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	252 285 318	205	28	169	73	146	30	18	26	17.5	PT1/8"	266 329 391
	20	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	299 340 381	205	28	169	73	146	30	18	26	17.5	PT1/8"	266 329 391

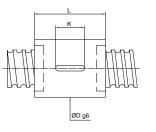
FOIC

																	단위	2 : mm
스크루	루크기			기본 정격 히	·중(kgf)	너	트		플	플랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	х	Υ	z	Q	kgf/ μm
	5	3.175	2×(2)	610	1140	34	53	57	12	45	20	40	12	5.5	9.5	5.5	M6×1P	29
20	,	3.173	3×(2)	860	1710	34	67	3,	12	73	20	40	12	5.5	7.5	5.5	WOXII	43
20	6	3.969	2×(2)	760	1370	34	61	57	12	15	20	40	12	5.5	0.5	5.5	M6×1P	29
	U	3.909	3×(2)	1080	2050	54	77	37	12	43	20	40	12	5.5	9.5	ر.ر	WOATI	50
			2×(2)	350	960		44											30
	4	2.381	3×(2)	500	1440	40	56	63	12	51	22	44	15	5.5	9.5	5.5	M8×1P	46
			4×(2)	640	1920		64											59
			2×(2)	690	1530		53											35
25	5	3.175	3×(2)	980	2300	40	67	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	51
23			4×(2)	1250	3070		76											67
	6	3.969	3×(2)	1275	2740	40	77	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	52
	8	3.969	3×(2)	1275	2740	40	85	63.5	12	51	22	44	15	5.5	9.5	5.5	M8×1P	52
	10	4.762	2×(2)	1140	2140	42	88	69	15	55	26	52	15	6.6	11	6.5	M8×1P	36
	10	4.702	3×(2)	1610	3210	42	102	09	13	33	20	32	13	0.0	'''	0.5	MOXIF	53
28	6	3.175	3×(2)	1030	2630	43	69	68	12	55	26	52	15	6.6	11	6.5	M8×1P	56
20	10	3.175	2×(2)	730	1750	45	77	73	12	60	30	60	15	6.6	11	6.5	M8×1P	38
	4	2.381	3×(2)	560	1840	43	56	68	12	55	26	52	15	6.6	11	65	M8×1P	55
	4	2.301	5×(2)	870	3070	43	73	00	12	33	20	32	13	0.0	'''	0.5	MOXIF	89
	5	3.175	3×(2)	1095	3060	48	67	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	63
)	3.173	4×(2)	1400	4080	40	77	/3.3	12	00	30	00	13	0.0	'''	0.5	MOXIF	82
32	6	3.969	3×(2)	1500	3750	48	77	73.5	12	60	30	60	15	6.6	11	6.5	M8×1P	65
32	0	3.909	4×(2)	1920	5000	40	90	/3.3	12	60	30	60	15	0.0	11	0.5	WOXIP	86
	8	4.762	3×(2)	1820	4230	50	95	83	16	66	32	64	15	6.6	11	6.5	M8×1P	66
	٥	4.702	4×(2)	2330	5640	50	112	0.5	10	00	32	04	13	0.0	11	0.5	IVIOXIP	86
	10	6.35	3×(2)	2605	5310	50	120	88	16	70	34	68	15	9	14	8.5	M8×1P	67
	12	6.35	3×(2)	2605	5310	50	124	88	16	70	34	68	15	9	14	8.5	M8×1P	67

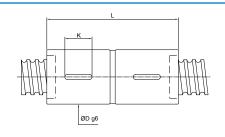


																	단위	2 : mm
스크루	루크기			기본 정격 히	·중(kgf)	너	트		픨	랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	н	S	х	Y	Z	Q	kgf/ μm
			3×(2)	1230	3970		65											75
	5	3.175	4×(2)	1575	5290	55	80	88.5	16	72	29	58	15	9	14	8.5	M8×1P	100
			6×(2)	2230	7940		101											147
	6	3.969	4×(2)	2130	6410	55	93	00 F	16	72	24	60	15	0	1.4	8.5	M01D	103
40	6	3.909	6×(2)	3020	9620	33	118	88.5	10	12	34	00	15	9	14	0.5	M8×1P	149
	8	4.762	4×(2)	2720	7620	60	116	93	16	76	36	72	20	9	14	8.5	M8×1P	105
	10	C 25	3×(2)	3010	7100	64	123	100	10	0.4	42	06	20	11	17.5	11	DT1 /0"	82
	10	6.35	4×(2)	3850	9470	04	143	106	18	84	43	80	20	11	17.5	11	PT1/8"	107
	12	6.35	4×(2)	3850	9470	63	160	106	18	84	43	86	20	11	17.5	11	PT1/8"	107
			3×(2)	1350	5070		65											89
	5	3.175	4×(2)	1730	6760	66	80	98	16	82	36	72	20	9	14	8.5	PT1/8"	119
			6×(2)	2450	10140		101											174
	6	3.969	4×(2)	2380	8250	66	93	00	16	ดา	26	72	20	9	14	8.5	PT1/8"	123
	6	3.909	6×(2)	3370	12380	66	118	98	10	82	30	12	20	9	14	0.5	P11/6	181
50	8	4.762	4×(2)	3010	9610	70	119	113	18	90	42	84	20	11	17.5	11	PT1/8"	125
	10	6.35	3×(2)	3430	9300	74	123	116	10	ດາ	42	01	20	11	17.5	11	M8×1P	99
	10	0.55	4×(2)	4390	12400	/4	143	110	10	92	42	04	20	''	17.5		MOXIF	129
		7.144	4×(2)	5530	16330	75	164	121	22	97	47	94	20	14	20	13	PT1/8"	135
	12	7.938	3×(2)	4510	11150	75	147	121	22	97	17	0/	20	14	20	13	PT1/8"	101
		7.930	4×(2)	5770	14870	75	164	121	22	21	77	24	20	14	20	13	1 1 1/6	132
	6	3.969	4×(2)	2610	10550	80	96	122	1Ω	100	15	90	20	11	17.5	11	PT1/8"	146
	O	3.909	6×(2)	3700	15830	00	121	122	10	100	43	90	20	''	17.5		F11/0	217
	8	4.762	4×(2)	3375	12200	82	119	124	18	102	46	92	20	11	17.5	11	PT1/8"	151
63	10	6.35	4×(2)	5020	16450	85	147	132	22	107	48	96	20	14	20	13	PT1/8"	158
	12	7.938	3×(2)	5140	14570	90	147	136	22	112	52	104	20	14	20	13	PT1/8"	122
	12	7.936	4×(2)	6580	19430	90	171	130	22	112	32	104	20	14	20	13	F11/0	161
	20	9.525	2×(2)	5990	15740	95	156	153	28	123	59	118	20	18	26	17.5	PT1/8"	107
	10	6.35	2×(2)	3360	13390	105	95	171	22	147	67	13/	25	14	20	13	PT1/8"	118
80		0.55	3×(2)	4760	20090	103	115	17.1		/	07	154	23	1-4	20	15	1 1 1/0	173
-80	16	9.525	2×(2)	11280	41220	115	175	205	28	169	73	146	30	18	26	17.5	PT1/8"	201
	20	9.525	3×(2)	7960	27480	115	159	205	28	169	73	146	30	18	26	17.5	PT1/8"	137

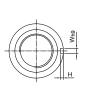

RSIC

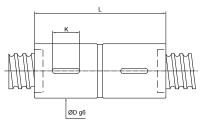

단위:*mm*

											단위: <i>mm</i>
스크루	루크기			기본 정격 혀	ㅏ중(kgf)	너	E		플랜지		강성
O.D.	리드	볼 직경	볼열의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	К	w	Н	kgf/μm
16	5	3.175	3	765	1240	30	40	20	3	1.8	18
	5	3.175	3	860	1710	34	41	20	3	1.8	21
20		3.173	4	1100	2280	24	48	20	3	1.0	28
20	6	3.969	3	1080	2050	34	46	20	4	2.5	22
	U	3.909	4	1380	2730	34	56	25	7	2.5	28
	5	3.175	3	980	2300	40	41	20	4	2.5	26
25	,	3.173	4	1250	3070	40	48	20	7	2.5	33
23	6	3.969	3	1275	2740	40	46	20	4	2.5	26
	U	3.909	4	1630	3650	40	56	25	7	2.5	34
			3	1095	3060		41	20			31
	5	3.175	4	1400	4080	48	48	20	4	2.5	41
			6	1980	6120		61	25			60
			3	1500	3750		46	20			32
32	6	3.969	4	1920	5000	50	56	25	5	3.0	43
32			6	2720	7500		70	32			63
	8	4.762	3	1820	4230	50	59	25	5	3.0	32
		02	4	2330	5640		70			5.0	43
	10	6.35	3	2605	5310	50	68	25	6	3.5	33
		0.55	4	3340	7080	30	79	32		3.3	45
	5	3.175	4	1575	5290	55	48	20	4	2.5	49
		51175	6	2230	7940		61	25	·	2.5	73
	6	3.969	4	2130	6410	55	56	25	5	3.0	51
40		5.505	6	3020	9620		70	32		5.0	75
	8	4.762	4	2720	7620	60	70	25	5	3.0	52
	8	02	6	3850	11430		91	40	J	5.0	77
	10	6.35	3	3010	7100	65	68	25	6	3.5	41
	.0	0.55	4	3850	9470		79	32		5.5	53



스크루	루크기			기본 정격 혀	구중(kgf)	너	E		플랜지		강성
O.D.	리드	볼 직경	볼열의 수	동정격 (1×10° REV.) Ca	정정격 Co	Dg6	L	К	w	н	kgf/µm
	5	3.175	4 6	1730 2450	6750 10130	66	48 61	20 25	4	2.5	60 86
	6	3.969	4 6	2380 3370	8250 12380	66	56 70	25 32	5	3.0	61 90
50	8	4.762	4 6	3010 4260	9610 14420	70	70 91	32	5	3.0	63 92
	10	6.35	3	3430 4390	9300 12400	74	68 79	32	6	3.5	49 65
	12	7.938	6 3	6220 4510	18600 11150	75	102 82	40	6	3.5	95 50
	6	3.969	4	5770 2610	14870 10550	80	95 56	25	6	3.5	66 73
	8	4.762	6	3700 3375	15830 12200	82	70 70	32 32	6	3.5	107 76
63			6	4780 5020	18300 16450		91 79	40 32			111 79
	10	6.35	6	7110 6580	24680 19430	85	85 95	40 40	8	4.0	116 80
	12	7.938	6	9320 5510	29150 21200	90	123 79	50 32	8	4.0	118 95
	10	6.35	6	7810 7500	31800 25700	105	102	40	8	4.0	140 98
80	12	7.938	6	10620	38550	110	123	50	8	4.0	143 97
	20	9.525	3	9770 12510	31700 42270	115	126 149	50 63	10	5.0	127
	10	6.35	3 4 5 6	4760 6090 7380 8630	20090 26790 33490 40190	125	72 82 94 104	50	10	5	91 120 148 176
100	16	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	128 77 162	63	10	5	140 173 205
	20	9.525	4 5 6	14440 17490 20460	54960 68700 82440	135	144 164 187	63	10	5	140 173 205


RDIC


단위:*mm*

											단위: <i>mm</i>
스크루	루크기			기본 정격 혀	구중(kgf)	너	트		플랜지		강성
O.D.	리드	볼 직경	볼열의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	К	w	Н	kgf/μm
16	5	3.175	3	765	1240	28	75	20	3	1.8	35
10	5	3.173	4	980	1650	20	85	20	3	1.0	47
	5	3.175	3	860	1710	34	75	20	3	1.8	43
20	ر	3.173	4	1100	2280	34	85	20	3	1.0	56
20	6	3.969	3	1080	2050	34	87	20	4	2.5	43
	0	3.909	4	1380	2730	34	103	25	4	2.5	56
	5	3.175	3	980	2300	40	75	20	4	2.5	51
25	,	3.173	4	1250	3070	40	85	20	7	2.5	67
23	6	3.969	3	1275	2740	40	87	20	4	2.5	52
	Ü	3.909	4	1630	3650	40	103	25	7	2.5	68
			3	1095	3060		75	20			63
	5	3.175	4	1400	4080	48	85	20	4	2.5	82
			6	1980	6120		105	25			122
			3	1500	3750		87	20			65
32	6	3.969	4	1920	5000	50	103	25	5	3.0	86
32			6	2720	7500		127	32			125
	8	4.762	3	1820	4230	50	109	25	5	3.0	66
		4.702	4	2330	5640	50	127	23		5.0	86
	10	6.35	3	2605	5310	50	135	25	6	3.5	67
	10	0.55	4	3340	7080	30	155	32		3.3	89
	5	3.175	4	1575	5290	55	85	20	4	2.5	100
	,	3.173	6	2230	7940		105	25	-	2.3	147
	6	3.969	4	2130	6410	55	103	25	5	3.0	103
40		3.505	6	3020	9620	- 55	127	32	J	5.0	149
	8	4.762	4	2720	7620	60	127	25	5	3.0	105
	U	4.762	6	3850	11430	00	161	40	,	5.0	154
	10	6.35	3	3010	7100	65	135	25	6	3.5	82
		6.35	4	3850	9470	- 05	155	32		3.3	107

스크루	루크기			기본 정격 혀	누중(kgf)	너	트		플랜지		강성
O.D.	리트	볼 직경	볼열의 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	К	w	Н	kgf/μm
	5	3.175	4 6	1730 2450	6750 10130	66	85 105	20 25	4	2.5	119 174
			4	2380	8250		103	25			123
	6	3.969	6	3370	12380	66	127		5	3.0	181
			4	3010	9610		127	32			125
50	8	4.762	6	4260	14420	70	161	32	5	3.0	185
50			3	3430	9300		135	32			99
	10	6.35	4	4390	12400	74	155	32	6	3.5	129
	10	0.33	6	6220	18600	/4	197	32 40	0	3.3	191
			3	4510	11150		161	40			101
	12	7.938	4	5770	14870	75	185	40	6	3.5	132
			4	2610	10550		106	25			146
	6	3.969	6	3700	15830	80	130	32	6	3.5	217
			4	3375	12200		131	32			151
	8	4.762	6	4780	18300	82	165	40	6	3.5	222
63			4	5020	16450		160	32			158
	10	6.35	6	7110	24680	85	202	40	8	4.0	232
			4	6580	19430		185	40			161
	12	7.938	6	9320	29150	90	238	50	8	4.0	236
			4	5510	21200		160	32			190
	10	6.35	6	7810	31800	105	202	32 40	8	4.0	280
			4	7500	25700		185	40			196
80	12	7.938	6	10620	38550	110	238	50	8	4.0	288
			3	9770	31700		245	50			193
	20	9.525	4	12510	42270	115	289	63	10	5.0	254
			3	4760	20090		132	03			173
			4	6090	26790		164				228
	10	6.35	5	7380	33490	125	174	50	10	5.0	281
			6	8630	40190		204				334
			4	14440	54960		240				266
100	16	9.525	5	17490	68700	135	274	63	10	5.0	329
	10	9.323	6	20460	82440	133	306	05	10	5.0	391
			4	14440	54960		284				266
	20	9.525	5	17490	68700	135	324	63	10	5.0	329
	20	9.323	6	20460	82440	133	366	03	10	5.0	391
			J	20700	02770		500			· Y 1	

BALLSCREWS

고하중

대리드 볼스크류는 고강성, 저소음, 열제어의 특징을 갖추는 것이 매우 중요합니다.

PMI 사는 특허를 획득한 설계와 처리를 통해 다음 특징을 갖추었습니다:

탁월한 DN값

최대 DN 값: 220,000

저소음

나사산을 통과하는 볼의 원 직경(BCD)이 표준치로 정확하기 때문에 소음이 줄어들 뿐만 아니라 볼스크류의 기동토크가 안정적이고 일정합니다. 플라스틱을 이용한 순환 시스템 설계로 가청 주파수가 낮습니다.

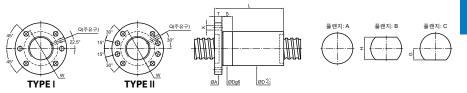
공간 절약

볼 너트 직경이 무려 $20\%\sim25\%$ 나 줄어들었으며, 너트 길이도 짧아졌습니다. 그래서 공간을 50%나 적게 차지합니다.

20%~25%

감소

순환

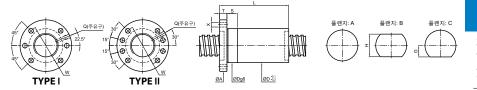

재순환 시스템의 경로가 특별하게 설계되어 진입각과 접촉하고 동일한 접점에 있는 BCD와도 접촉해 아주 부 드럽게 작동합니다.

용도

CNC 기계류 / 정밀 기계류 / 고속 기계류 / 반도체 장비 / 의료 장비

주: 볼 직경 7.938mm 이상(포함) 은 금속 재질 엔드 디플렉터.

																단위	2 : mm
스크	류 크기			수정 후 정격 혀	하중(kgf)	너	트			플	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	w	G	Н	TYPE	S	Q	х	kgf/ μm
	4		3	610	1190		28										20
12	5	2.381	3	610	1190	24	32	44	10	34	16	32	1	10	M6×1P	15	20
12	10	2.301	3	590	1160	24	45	44	10	34	10	32	•	10	MOXIF	4.5	20
	20		2	390	770		54										14
14	4	2.381	3	680	1430	26	28	46	10	36	16	32	- 1	10	M6×1P	4.5	23
14	5	3.175	3	820	1520	28	32	49	10	36	16	32	- 1	10	M6×1P	4.5	25
	5		3	850	1640		35										26
15	10	3.175	3	840	1610	29	47	51	10	39	19	38	- 1	10	M6×1P	5.5	26
	20		2	560	1050		58										18
	5		3	890	1760	29	35										27
16	10	3.175	3	870	1740	29	50	51	10	39	19	38	-1	10	M6×1P	5.5	27
	16		2	600	1150	29	51										19
	4	2.381	3	780	2000	32	28	54	12	42	19	38	I	12	M6×1P	5.5	29
	5		4	1300	3030		40										43
	10	3.175	3	990	2220	36	47	62	12	49	24	48	-1	12	M6×1P	6.6	33
20	20		2	670	1450		56										23
	6	3.060	3	1540	3310	37	38	62	12	49	23	46	1	12	M6×1P	6.6	34
	8	3.969	3	1540	3300	3/	45	62	12	49	23	40	'	12	MOXIP	6.6	34
	10	4.762	4	2560	5530	40	62	62	12	51	24	48	ı	15	M6×1P	6.6	47
	4	2.381	3	870	2560	36	28	62	12	49	22	44	ı	12	M6×1P	6.6	34
	5		4	1440	3840		41										50
	10		3	1100	2810		50										38
	15	3.175	4	1410	3780	40	81	62	12	51	24	48	-1	15	M6×1P	6.6	50
	20		2	750	1840		60										26
	25		2	730	1810		71										26
25	6		4	2250	5710		45										53
25	12	3.969	4	2240	5660	43	70	64	12	51	24	48	-1	15	M6×1P	6.6	53
	25		2	1160	2720		70										28
	8		4	2880	6890		55										55
	10	- - 4.762	4	2880	6870	45	63	65	15	5.4	25 F	51	1	15	M6v1D	6.6	55
	16	4./62	4	2830	6790	45	85	65	15	54	25.5	31	1	15	M6×1P	0.0	55
	20		2	1470	3180		61										29
	10	6.35	5	5050	11500	51	78	84	16	67	32	64	I	15	M6×1P	9	72

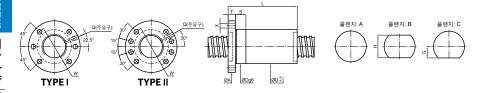

유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

FSDC

FSDC

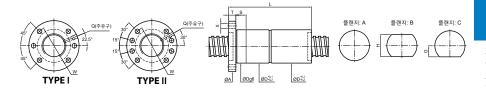
																단위	2 : mm
스크	류 크기			수정 후 정격 혀	하중(kgf)	너	트			플	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	W	G	Н	TYPE	S	Q	х	kgf/ μm
	5	3.175	5	1850	5460	43	48	65	12	51	24	48	- 1	15	M8×1P	6.6	67
	6	3.969	5	2880	7980	46	52	66	12	54	26	52	-1	15	M8×1P	6.6	70
	8		3	2350	5720		46										46
28	10	4.762	3	2340	5710	48	52	74	12	60	30	60	-1	15	M8×1P	6.6	46
	16		5	3680	9690		102										73
	10	6.35	5	5280	12530	54	78	87	16	72	34.5	60	1	15	M8×1P	9	77
	12	0.55	5	5270	12500	J-	88	07	10	12	J - .J	09	'	13	WOX II	9	77
	5	3.175	4	1610	4970	50	41	87	16	72	34.5	69	ı	15	M8×1P	9	61
	6		5	3050	9140		52										77
	10	3.969	4	2550	7500	53	62	87	16	72	34.5	69	-1	15	M8×1P	9	63
	32		2	1300	3540		90										40
	8		5	3900	10930		67										80
	10		5	3890	10910		77										80
	12	4.762	5	3890	10890	53	87	87	16	72	34.5	60	1	15	M8×1P	9	80
	15	4.702	5	3860	10850	55	116	07	10	12	J - .J	09	'	13	MOXII	9	80
32	20		2	1700	4230		70										34
32	32		2	1640	4120		90										34
	10		5	4900	13360		78										84
	12	5.556	5	4890	13340	55	88	87	16	72	34.5	60	1	15	M8×1P	9	84
	16	3.330	5	4860	13280	33	107	07	10	12	34.3	09	'	13	IVIOX I F	9	79
	20		3	3140	8110		87										53
	10		5	5720	14490		78										85
	12	6.35	5	5720 14490 <u>78</u> 5710 14470 57 <u>88</u> 87	87	16	72	34.5	60	1	15	M8×1P	9	85			
	16	0.55	5 4	4520	11100	37	92	07	10	12	34.3	09	'	13	IVIOXIP	9	69
	20		3	3530	8340		88										54

유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.



																단위	2 : mm
스크	류크기			수정 후 정격 혀	하중(kgf)	너	트			플	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	W	G	Н	TYPE	S	Q	х	kgf/ μm
	8	4.762	5	4170	12580	56	63	84	11	68	34	68	- 1	15	M8×1P	9	86
	10		5	6050	16460		78										93
36	12		5	6080	16430		88										93
30	16	6.35	5	6050	16360	61	109	91	18	76	34	68	II	15	M8×1P	9	93
	20		4	4910	12890		109										76
	36		2	2570	6250		95										41
	10	_	5	6260	17740		80										97
38	12	- 6.35	_ 5	6260	17410	63	88	93	18	78	35	70	Ш	20	M8×1P	a	97
30	16	_ 0.55	_ 5	6220	17350	05	109	, ,	10	70	33	, 0	"	20	WOX11	P 9	97
	40		3	3830	10220		142										71
	5	3.175	4	1760	6260	58	42	91	18	76	34	68	II	15	M8×1P	9	71
	6	3.969	5	3420	11810	58	52	91	18	76	34	68	II	15	M8×1P	9	92
	8	4.762	4	3610	11260	60	56	91	18	76	34	68	II	15	M8×1P	9	77
	10		5	6430	18440		78										101
	12		5	6420	18410		88	95	18	80	36	72	Ш	20	M8×1P	9	101
40	15	6.35	5	6380	18350	65	103),	10	00	30	, _		20	WOX11		101
	16	0.55	5	6390	18330	03	108										101
	20	_	4	5190	14450		110	98	18	83	37	74	Ш	20	M8×1P	11	82
	40		2	2700	6950				10	05	٥,	′ '		20	WOX11		43
	12	7.144	5	7530	20800	70	110	98	18	83	37	74	Ш	20	M8×1P	11	103
	16	,.,	5	7500	20730	, 0	. 10	-50	.0	03	٥,	, ¬	"	20	1110/11	''	103

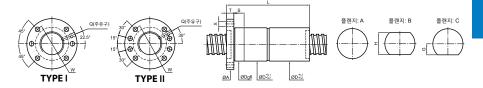
유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.


FSDC

MELOCITEVA

																단위	2 : mm
스크	류 크기			수정 후 정격 혀	하중(kgf)	너	트			플;	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	т	w	G	н	TYPE	S	Q	х	kgf/ μm
	8	4.762	4	3770	12580	66	55	98	18	83	37	74	Ш	20	M8×1P	11	84
	10		5	6910	21330		78										110
45	12	6.35	5	6910	21310	70	89	105	18	88	40	80	Ш	20	M8×1P	11	110
45	16	•	5	6880	21250		111										110
	12	7.144	5	7930	23300	73	88	105	10	88	40	80	Ш	20	M8×1P	11	113
	20	7.144	4	6440	18340	/3	110	105	10	00	40	80	"	20	WOXIP	"	91
	5	3.175	5	2360	9950	70	48	105	18	88	40	80	Ш	20	M8×1P	11	105
	8	4.762	5	4780	17550	70	64	105	18	88	40	80	II	20	M8×1P	11	109
	10		5	7160	23320		78										119
50	12	- - 6.35	5	7150	23300	75	90	118	10	100	16	92	п	20	M8×1P	11	119
	16	0.55	5	7120	23250	/3	109	110	10	100	40	92	"	20	MOXIF		119
	20		3	4460	13520		95										74
	20	7.938	4	7810	22680	80	114	121	18	104	50	100	Ш	25	M8×1P	11	101
55	12	6.35	5	7340	25280	80	96	118	18	100	46	92	II	20	$M8 \times 1P$	11	128
63	10	6.35	5	7800	29210	88	84	135	22	115	50	110	Ш	20	M8×1P	11	141
0.5	16	9.525	5	13640	43620	102	116	147	20	127	56	112	II	25	M8×1P	14	167
	20		5	15350	56760		143										196
80	25	9.525	4	12530	44860	118	146	165	25	145	65	130	Ш	25	M8×1P	14	159
	30		3	9610	32980		134										121

유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.


																단위	2 : <i>mm</i>
스크	류크기			수정 후 정격 혀	하중(kgf)	너	트			플	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	W	G	Н	TYPE	S	Q	х	kgf/ μm
	4	2.381	3	780	2000	32	61	54	12	42	19	38	I	12	M6×1P	5.5	44
	5		4	1300	3030		80										65
	10	3.175	3	990	2220	36	97	62	12	49	24	48	- 1	12	M6×1P	6.6	50
20	20	-	2	670	1450		116										33
	6	2.000	3	1540	3310	37	81	<i>c</i> 2	12	40	22	10		12	MCv1D		51
	8	3.969	3	1540	3300	3/	93	62	12	49	23	46	I	12	M6×1P	0.0	51
	10	4.762	4	2560	5530	40	107	62	12	51	24	48	- 1	15	M6×1P	6.6	70
	4	2.381	3	870	2560	36	60	62	12	49	22	44	ı	12	M6×1P	6.6	53
	5		4	1440	3840		81										77
	10		3	1100	2810		100										58
	15	3.175	4	1410	3780	40	166	62	12	51	24	48	1	15	M6×1P	6.6	77
	20		2	750	1840		120										39
	25	-	2	730	1810		146										39
25	6		4	2250	5710		87										80
25	12	3.969	4	2240	5660	43	142	64	12	51	24	48	1	15	M6×1P	6.6	80
	25		2	1160	2720		145										41
	8		4	2880	6890		111										83
	10		4	2880	6870		128										83
	16	4.762	4	2830	6790	45	173	65	15	54	25.5	51	I	15	M6×1P	6.6	83
	20		2	1470	3180		122										42
	10	6.35	5	5050	11500	51	153	84	16	67	32	64	ı	15	M6×1P	9	108

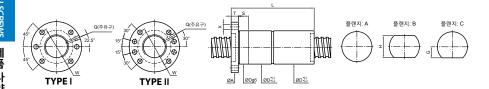
유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

FDDC

																단위	P : mm
스크	류 크기			수정 후 정격 전	하중(kgf)	너	트			플	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	w	G	н	TYPE	S	Q	х	kgf/ μm
	5	3.175	5	1850	5460	43	93	65	12	51	24	48	- 1		M8×1P	6.6	104
	6	3.969	5	2880	7980	46	106	66	12	54	26	52	I		M8×1P	6.6	108
	8		3	2350	5720		94										69
28	10	4.762	3	2340	5710	48	102	74	12	60	30	60	- 1	15	M8×1P	6.6	69
	16		5	3680	9690		206										112
	10	6.35	5	5280	12530	54	158	87	16	72	34.5	60	1		M8×1P	9	118
	12	0.33	5	5270	12500	54	172	0/	10	12	34.3	09	'		MOXIP	9	118
	5	3.175	4	1610	4970	50	81	87	16	72	34.5	69	I	15	M8×1P	9	93
	6		5	3050	9140		106										120
	10	3.969	4	2550	7500	53	126	87	16	72	34.5	69	-1	15	M8×1P	9	96
	32		2	1300	3540		172										60
	8		5	3900	10930		132										124
	10		5	3890	10910		147										124
	12	4.762	5	3890	10890	- 53	171	87	16	72	34.5	60		15	M8×1P	9	124
	15	4.702	5	3860	10850		221	07	10	12	54.5	U 9	'	13	MOXII	,	124
32	20		2	1700	4230		140										51
32	32		2	1640	4120		186										51
	10		5	4900	13360		153										129
	12	- 5.556	5	4890	13340	. 55	172	97	16	72	34.5	60		15	M8×1P	9	129
	16	. 5.550	5	4860	13280		211	07	10	12	54.5	U 9	'	13	MOX II	9	121
	20		3	3140	8110		177										79
	10		5	5720	14490		153										131
	12	- 6.35	5	5710	14470	57	172	97	16	72	34.5	60	1	15	M8×1P	9	131
	16	0.33	4	4520	11100	57	180	07	10	, 2	J -1 .J	09	'	13	MIOXIF	9	105
	20		3	3530	8340		178										80

유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

																단위	위: <i>mm</i>
스크	류크기			수정 후 정격 전	하중(kgf)	너	트			플링	랜지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	w	G	Н	TYPE	S	Q	х	kgf/ μm
	8	4.762	5	4170	12580	56	127	84	11	68	34	68	Ш	15	M8×1P	9	133
	10		5	6050	16460		153										142
36	12		5	6080	16430		172										142
30	16	6.35	5	6050	16360	61	213	91	18	76	34	68	Ш	15	M8×1P	9	142
	20		4	4910	12890		217										115
	36		2	2570	6250		194										59
	10		5	6260	17740		155										149
38	12	- 6.35	5	6260	17410	63	172	93	18	78	35	70	Ш	20	M8×1P	9	149
36	16	0.55	5	6220	17350	03	213	93	10	70	33	70	"	20	MOXII	,	149
	40		3	3830	10220		282										106
	5	3.175	4	1760	6260	58	87	91	18	76	34	68	II	15	M8×1P	9	111
	6	3.969	5	3420	11810	58	108	91	18	76	34	68	II	15	M8×1P	9	142
	8	4.762	4	3610	11260	60	118	91	18	76	34	68	Ш	15	M8×1P	9	118
	10		5	6430	18440		158										155
	12		5	6420	18410		172	95	18	80	36	72	Ш	20	M8×1P	9	155
40	15	6.35	5	6380	18350	65	226	93	10	80	30	12	"	20	IVIOX I F	9	155
	16	0.55	5	6390	18330	65	212										155
	20		4	5190	14450		220	98	18	02	37	74	Ш	20	M8×1P	11	125
	40		2	2700	6950		210	90	10	03	3/	74	"	20	IVIOXIP	11	64
	12	7.144	5	7530	20800	70	174	98	18	83	37	74	Ш	20	M8×1P	11	158
	16	7.144	5	7500	20730	70	212	20	10	03	3/	/4	"	20	MOXIF	''	158


유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

BALLSCREWS

외부 볼 순환 너트

정밀 연삭 볼스크류 외부 볼 순환 너트

FDDC

																단위	P : mm
스크	류크기			수정 후 정격 혀	하중(kgf)	너	트			플린	낸지			피트	오일홀	볼트	강성
O.D.	리드	볼 직경	볼열 의 수	동정격 (1×10 ⁶ REV.) Cam	정정격 Coam	Dg6	L	Α	Т	W	G	Н	TYPE	S	Q	х	kgf/ μm
	8	4.762	4	3770	12580	66	114	98	18	83	37	74	Ш	20	M8×1P	11	130
	10		5	6910	21330		158										170
45	12	6.35	5	6910	21310	70	171	105	18	88	40	80	Ш	20	M8×1P	11	170
45	16	-	5	6880	21250		215										170
	12	7.144	5	7930	23300	73	178	105	18	88	40	80	Ш	20	M8×1P	11	173
	20	7.144	4	6440	18340	/3	220	105	10	00	40	00	"	20	WOXIP	"	139
	5	3.175	5	2360	9950	75	98	105	18	88	40	80	Ш	20	M8×1P	11	164
	8	4.762	5	4780	17550	75	128	105	18	88	40	80	Ш	20	M8×1P	11	169
	10		5	7160	23320		158										185
50	12	- 6.35	5	7150	23300	75	174	118	18	100	46	92	II	20	M8×1P	11	185
	16	0.55	5	7120	23250		215										185
	20		3	4460	13520	75	185	118	18	100	46	92	Ш	20	M8×1P	11	112
	20	7.938	4	7810	22680	80	220	121	10	104	40	92	"	20	MOXIF	''	154
55	12	6.35	5	7340	25280	80	174	118	18	100	46	92	II	20	M8×1P	11	198
63	10	6.35	5	7800	29210	88	164	135	22	115	50	100	. 11	20	M8×1P	14	220
-03	16	9.525	5	13640	43620	102	228	147	20	127	56	112	"	25	IVIOXIP	14	257
	20		5	15350	56760		283										305
80	25	9.525	4	12530	44860	118	296	165	25	145	65	130	II	25	M8×1P	14	245
	30		3	9610	32980		254										185

유의: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

특징

- 순조로운 강구 순환.
- 저소음.
- 일반 리드와 큰 외경일 경우 뛰여난 성능.

타입

- 외부 순환 볼스크류의 볼너트는2종류가 있습니다. 그림2의 함몰형과 그림3의 돌출형이 있습니 다. 함몰형은 카타로그에서 볼 수 있는 것처럼 볼순환튜브가 볼너트의 회전면 안에 있습니다.
- 어떤 경우에, 고객 사양 도면에 따라 더 작은 외경 볼너트가 요구됩니다. 이 경우 볼 순환 튜 브는 볼너트 순환면 밖으로 돌출됩니다.

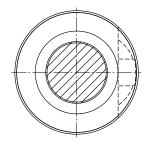


그림2. 함몰형

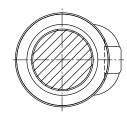
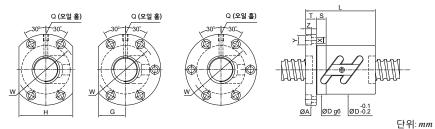
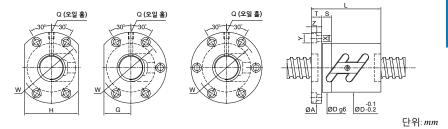
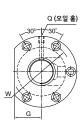
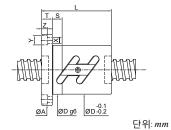




그림3. 돌출형

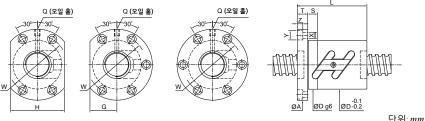
FSWC

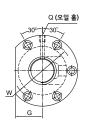


																	단취	- : mm
스크	류 크기		볼	기본 정격 하	중(kgf)	너	트		클	플랜ㅈ	1		피트		볼트	-	오일 홀	강성
O.D.	리드	볼 직경	교 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	A	Т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	3	2.000	2.5×1	250	430		37											9
10	4	2.000	2.5×1	250	430	26	40	46	10	36	14	28	10	4.5	8	4.5	M6×1P	9
	5	2.000	2.5×1	250	430		42											9
12	4	2.381	2.5×1	380	640	30	40	- 50	10	40	16	32	10	45	Q	45	M6×1P	12
14	5	2.381	2.5×1	380	640	30	42	50	10	40	10	32	10	4.5	O	٠.5	IVIO A I I	12
14	4	2.381	2.5×1	410	750	34	40	- 57	11	45	17	34	10	5 5	9.5	5 5	M6×1P	14
	5	3.175	2.5×1	675	1145	34	42	3,		73	''	J-T	10	5.5	7.5	5.5	WOXII	15
	4	2.381	2.5×1	420	800		40											14
15	5	3.175	2.5×1	680	1210	34	42	57	10	45	17	34	10	5.5	9.5	5.5	M6×1P	15
	10	3.175	2.5×1	680	1210		55											16
			1.5×2	490	1010		44											18
	4	2.381	2.5×1	430	850	34	41	57	11	45	17	34	10	5.5	9.5	5.5	M6×1P	15
			3.5×1	560	1180		42											21
			1.5×2	805	1525		45											19
	5	3.175	2.5×1	690	1270	40	41	63	11	51	21	42	15	5 5	9.5	5 5	M6×1P	16
16	,	3.173	2.5×2	1250	2540	70	56	05		<i>J</i> 1	21	72	13	5.5	7.5	5.5	WOXII	31
			3.5×1	920	1780		46											22
			1.5×2	805	1525		52											19
	6	3.175	2.5×1	690	1270	40	44	63	11	51	21	42	15	5.5	9.5	5.5	M6×1P	16
			3.5×1	920	1780		52											22
	10	3.175	2.5×1	690	1270	40	56	63	11	51	21	42	15	5.5	9.5	5.5	M6×1P	16
			1.5×2	530	1270		44											21
	4	2.381	2.5×1	480	1060	40	40	63.5	11	51	21	42	15	5 5	9.5	5 5	M6×1P	18
	7	2.501	2.5×2	820	2120	40	50	05.5		<i>J</i> 1	21	72	13	5.5	7.5	5.5	WOXII	35
			3.5×1	600	1480		43											25
			1.5×2	965	2070		45						15					24
	5	3.175	2.5×1	830	1730	44	42	67	11	55	26	52	10	5 5	0.5	5 5	M6×1P	20
20	J	3.173	2.5×2	1510	3460	44	56	07	11	33	20	32	15	ر.ر	9.3	ر.ر	MOXIF	39
20			3.5×1	1110	2420		46						15					26
			1.5×2	1285	2545		56											24
	6	3.969	2.5×1	1100	2120	48	49	71	11	59	27	54	15	5.5	9.5	5.5	M6×1P	20
			3.5×1	1470	2970		56											28
			1.5×2	1285	2545		61											24
	8	3.969	2.5×1	1100	2120	48	54	75	13	61	27	54	15	6.6	11	6.5	M6×1P	20
			3.5×1	1470	2970		62											28

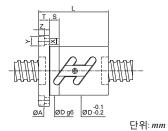


스=	크류 크기		볼	기본 정격 히	중(kgf)	너	트		1	플랜지	il.		피트		볼트		오일홀	강성
O.D	. 리드	볼 직경	ਭ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	4	2.381	1.5×2 2.5×1 2.5×2 3.5×1	600 510 930 680	1630 1355 2710 1900	46	44 40 49 42	69	11	57	26	52	15	5.5	9.5	5.5	M6×1P	26 22 42 30
	5	3.175	1.5×2 2.5×1 2.5×2 3.5×1	1065 910 1650 1210	2575 2150 4300 3010	50	45 41 56 46	73	11	61	28	56	15	5.5	9.5	5.5	M6×1P	28 24 46 33
25	6	3.969	1.5×2 2.5×1 2.5×2 3.5×1	1420 1210 2190 1610	3215 2680 5360 3750	53	56 49 62 56	76	11	64	29	58	15	5.5	9.5	5.5	M6×1P	29 24 47 34
	8	4.762	1.5×2 2.5×1 3.5×1	1820 1560 2080	3840 3200 4480	58	61 61 66	85	13	71	32	64	15	6.6	11	6.5	M6×1P	30 25 35
	10	4.762	1.5×2 2.5×1 3.5×1	1820 1560 2080	3840 3200 4480	58	71 65 75	85	15	71	32	64	15	6.6	11	6.5	M6×1P	30 25 35
	12	3.969	2.5×1	1210	2680	53	60	76	11	64	32	64	15	5.5	9.5	5.5	M6×1P	24
	5	3.175	1.5×2 2.5×1 2.5×2 3.5×1	1110 950 1720 1270	2960 2470 4940 3460	55	46 42 56 47	83	12	69	31	62	15	6.6	11	6.5	M8×1P	31 26 50 36
28	6	3.969	1.5×2 2.5×1 2.5×2 3.5×1	1480 1270 2300 1690	3605 3000 6000 4200	55	57 50 63 57	83	12	69	31	62	15	6.6	11	6.5	M8×1P	32 26 51 37
	8	4.762	1.5×2 2.5×1 3.5×1	1935 1650 2200	4325 3600 5040	60	65 63 68	93	15	76	36	72	15	9	14	8.5	M8×1P	33 28 38
	10	4.762	1.5×2 2.5×1 3.5×1	1935 1650 2200	4325 3600 5040	60	74 67 77	93	15	76	36	72	15	9	14	8.5	M8×1P	33 28 38

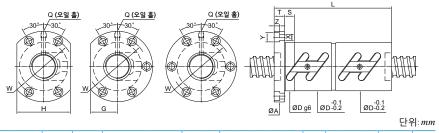

FSWC



스크	류크기		볼	기본 정격 하	·중(kgf)	너	트		Ŧ	플랜지	1		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	글 열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	4	2.381	2.5×1 2.5×2	565 1020	1750 3500	54	40 50	81	12	67	32	64	15	6.6	11	6.5	M6×1P	26 50
			1.5×2	1180	3410		47											34
	_	2 175	2.5×1	1010	2840	F0	43	0.5	12	71	22	<i>-</i> 1	1.5		11	٠.	MOV 1D	29
	5	3.175	2.5×2 2.5×3	1830	5680	58	72	85	12	71	32	04	15	0.0	11	0.5	M8×1P	56 82
			2.5×3 3.5×1	2590 1350	8520 3980		47											40
			1.5×2	1560	4135		57											35
			2.5×1	1330	3450		45											29
	6	3.969	2.5×2	2410	6900	62	63	88	12	75	34	68	15	6.6	11	6.5	$M8 \times 1P$	57
			3.5×1	1770	4830		57											40
32			1.5×2	2010	5010		64											36
32			2.5×1	1720	4180		63											30
	8	4.762	2.5×2	3120	8360	66	80	98	15	82	38	76	15	9	14	8.5	M8×1P	59
			3.5×1	2300	5850		68											42
			1.5×2	3000	6530		78											38
			2.5×1	2570	5440		68											32
	10	6.35	2.5×2	4660	10880	74	97	108	15	90	41	82	15	9	14	8.5	M8×1P	61
			3.5×1	3430	7620		78											44
			1.5×2	3000	6530		88											38
	4.0		2.5×1	2570	5440		77							_			140 4B	32
	12	6.35	2.5×2	4660	10880	74	110	108	18	90	41	82	15	9	14	8.5	M8×1P	62
			3.5×1	3430	7620		91											44
			1.5×2	1240	3850		50											38
	5	3.175	2.5×2	1920	6420	65	60	00	1.5	02	38	76	15	9	1.4	0.5	M8×1P	62
	5	3.173	2.5×3	2720	9630	03	75	90	13	02	30	76	13	9	14	0.5	MOXIP	90
			3.5×1	1410	4490		50											44
	6	3.969	2.5×2	2600	7900	65	66	ΩQ	15	ดว	38	76	15	9	14	Ω 5	M8×1P	63
		3.909	2.5×3	3680	11850	03	84	<i>9</i> 0	13	02	50	70	13	,	1-7	0.5	MOXII	93
36			1.5×2	3180	7410		81											41
	10	6.35	2.5×1	2720	6180	75	71	118	18	98	45	90	15	11	175	11	M8×1P	35
		0.55	2.5×2	4930	12360	, ,	103	. 13	.0	,,	.5	20	.5		. , .5			68
			3.5×1	3630	8650		81											48
			2.5×1	2720	6180		77											35
	12	6.35	2.5×2	4930	12360	75		118	18	98	45	90	15	11	17.5	11	M8×1P	68
			3.5×1	3630	8650		91											48



																	난누	리: <i>mm</i>
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트		1	플랜지	4		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	_	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	Т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
			1.5×2	1280	4275		50											41
			2.5×1	1090	3560		48											34
	5	3.175	2.5×2	1980	7120	67	60	101	15	83	39	78	15	9	14	8.5	M8×1P	66
			2.5×3	2800	10680		75											98
			3.5×1	1450	4980		50											47
			1.5×2	1750	5300		60											42
			2.5×1	1500	4420		53											35
	6	3.969	2.5×2	2720	8840	70	66	104	15	86	40	80	15	9	14	8.5	PT1/8"	69
			2.5×3	3850	13260		84											101
			3.5×1	2000	6190		60											49
40			1.5×2	2220	6320		64											43
	8	4.762	2.5×1	1900	5270	74	63	108	15	90	41	82	15	9	14	8.5	PT1/8"	36
		, 02	2.5×2	3450	10540	, ,	83			,,		-		-		0.5	, 0	70
			3.5×1	2540	7380		68											50
			1.5×2	3370	8335		81											45
	10	6.35	2.5×1	2880	6950	82	71	124	18	102	47	94	20	11	17.5	11	PT1/8"	35
			2.5×2	5220	13900		103										, -	74
			3.5×1	3840	9730		81											52
			2.5×1	2880	6950		77											38
	12	6.35	2.5×2	5220	13900	86	112	128	18	106	48	96	20	11	17.5	11	PT1/8"	74
			3.5×1	3840	9730		91											52
	10	6.35	2.5×2	5480	15700	88	101	132	18	110	50	100	20	11	17.5	11	PT1/8"	81
			2.5×3	7760	23550		131											119
45			2.5×1	3550	8950		84											43
	12	7.144	2.5×2	6440	17900	90	112		18	110	50	100	20	11	17.5	11	PT1/8"	82
			2.5×3	9120	26850		148											121

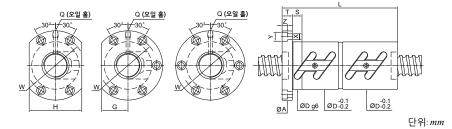

FSWC

스크.	류크기		_	기본 정격 하	·중(kgf)	너	트		2	플랜지	:		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	볼 열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	5	3.175	1.5×2 1.5×3 2.5×2 3.5×1	1410 2000 2190 1610	5305 7960 8840 6190	80	50 60 60 50	114	15	96	43	86	15	9	14	8.5	PT1/8"	49 72 80 57
	6	3.969	1.5×2 2.5×2 2.5×3 3.5×1	1920 2980 4220 2190	6600 11000 16500 7700	84	60 67 85 60	118	15	100	45	90	15	9	14	8.5	PT1/8"	50 82 121 58
50	8	4.762	1.5×2 2.5×2 2.5×3 3.5×1	2515 3900 5520 2870	7810 13020 19530 9110	87	68 86 109 71	128	18	107	49	98	20	11	17.5	11	PT1/8"	52 85 125 60
	10	6.35	1.5×2 2.5×1 2.5×2 2.5×3 3.5×1	3725 3190 5790 8200 4260	10450 8710 17420 26130 12190	93	81 71 101 131 81	135	18	113	51	102	20	11	17.5	11	PT1/8"	54 45 88 130 63
	12	7.144	2.5×1 2.5×2	3700 6710	10050 20100	100	88	146	22	122	55	110	20	14	20	13	PT1/8"	46 89
55	10	6.35	2.5×2 2.5×3	6005 8510	19540 29310	102	101 131	144	18	122	54	108	20	11	17.5	11	PT1/8"	95 140
63	10	6.35	2.5×1 2.5×2 2.5×3	3510 6370 9020	11200 22400 33600	108	75 105 135	154	22	130	58	116	20	14	20	13	PT1/8"	55 106 156
63	12	7.938	2.5×1 2.5×2 2.5×3	4770 8650 12250	13780 27560 41340	115	88 124 160	161	22	137	61	122	20	14	20	13	PT1/8"	59 113 167
	10	6.35	2.5×2 2.5×3	7130 10100	28500 42750	130	105 134	176	22	152	66	132	20	14	20	13	PT1/8"	129 190
80	12	7.938	2.5×2 2.5×3	9710 13760	35560 53340	136	124 160	182	22	158	68	136	20	14	20	13	PT1/8"	137 202
	16	9.525	2.5×2 2.5×3	16450 23300	59280 88920	143	160 208	204	28	172	77	154	30	18	26	17.5	PT1/8"	170 250

	L류 크기			기본 정격 하	·주(kaf)	너	E		3	플랜기	TI		피트		볼트		오일홀	가./// 강성
	-π' /		볼	기는 경역 의 동정격		-1	_		-	크 댄기	1		씨프		22		소리를	00
O.D.	리드	볼 직경	열의 수 열 × 권	(1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	Х	Υ	Z	Q	kgf/ μm
			1.5×2	490	1010		81											36
	4	2.381	2.5×1	430	850	34	70	57	11	45	17	34	15	5.5	9.5	5.5	M6×1P	30
			3.5×1	560	1180		78											42
			1.5×2	805	1525		90											39
16	5	3.175	2.5×1	690	1270	40	77	63	11	51	20	40	15	c c	0.5	c c	M6×1P	33
10	5	3.173	2.5×2	1250	2540	40	105	03	11	31	20	40	15	5.5	9.5	5.5	MOXIP	63
			3.5×1	920	1780		88											45
			1.5×2	805	1525		90											39
	6	3.175	2.5×1	690	1270	40	80	63	11	51	20	40	15	5.5	9.5	5.5	M6×1P	33
			3.5×1	920	1780		90											45
			1.5×2	530	1270		83											42
	4	2.381	2.5×1	480	1060	40	67	63	11	51	24	40	15		0.5		M6×1P	36
	4	2.301	2.5×2	820	2120	40	89	03	11	31	24	40	15	5.5	9.5	5.5	MOXIP	69
			3.5×1	600	1480		75											49
			1.5×2	965	2070		99											47
	5	3.175	2.5×1	830	1730	44	76	67	11		26	E 2	15	c c	0.5		M6×1P	40
20	3	3.173	2.5×2	1510	3460	44	105	67	11	55	20	32	15	5.5	9.5	5.5	MOXIP	77
20			3.5×1	1110	2420		80											55
			1.5×2	1285	2545		98											49
	6	3.969	2.5×1	1100	2120	48	82	71	11	59	27	54	15	5.5	9.5	5.5	M6×1P	41
			3.5×1	1470	2970		93											45
			1.5×2	1285	2545		108											49
	8	3.969	2.5×2	1100	2120	48	102	75	13	61	28	56	15	6.6	11	6.5	M6×1P	41
			3.5×1	1470	2970		110											56

FDWC

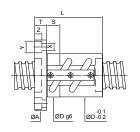
																	난구	- : mm
스크	류 크기		볼	기본 정격 하	중(kgf)	너	트		듵	플랜기	1		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	ョ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	н	S	х	Υ	Z	Q	kgf/ μm
	4	2.381	1.5×2 2.5×1 2.5×2 3.5×1	600 510 930 680	1630 1355 2710 1900	46	83 67 91 75	69	11	57	26	52	15	5.5	9.5	5.5	M6×1P	51 43 84 59
	5	3.175	1.5×2 2.5×1 2.5×2 3.5×1	1065 910 1650 1210	2575 2150 4300 3010	50	80 77 105 86	73	11	61	28	56	15	5.5	9.5	5.5	M6×1P	57 48 92 65
25	6	3.969	1.5×2 2.5×1 2.5×2 3.5×1	1420 1210 2190 1610	3215 2680 5360 3750	53	91 82 116 93	76	11	64	29	58	15	5.5	9.5	5.5	M6×1P	58 49 94 67
	8	4.762	1.5×2 2.5×1 3.5×1	1820 1560 2080	3840 3200 4480	58	111 95 111	85	13	71	32	64	15	6.6	11	6.5	M6×1P	60 50 69
	10	4.762	1.5×2 2.5×1 3.5×1	1820 1560 2080	3840 3200 4480	58	134 117 138	85	15	71	32	64	15	6.6	11	6.5	M6×1P	60 50 69
	5	3.175	1.5×2 2.5×1 2.5×2 3.5×1	1110 950 1720 1270	2960 2470 4940 3460	55	86 78 106 86	83	12	69	31	62	15	6.6	11	6.5	M8×1P	625210172
28	6	3.969	1.5×2 2.5×1 2.5×2 3.5×1	1480 1270 2300 1690	3605 3000 6000 4200	55	98 89 117 94	83	12	69	31	62	15	6.6	11	6.5	M8×1P	63 53 103 73
	8	4.762	1.5×2	1935 1650 2200	4325 3600 5040	60	113 97 113	93	15	76	36	72	15	9	14	8.5	M8×1P	66 55 76
	10	4.762	1.5×2 2.5×1 3.5×1	1935 1650 2200	4325 3600 5040	60	134 117 138	93	15	76	36	72	15	9	14	8.5	M8×1P	66 55 76

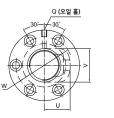

Q (오일 <u>홍</u>	(오일 홀) Q (오일 홀)	Q (오일 홀)	TS	
30° 1/30°	30° 1/30°	30° 1/30°	-4-	
				0.05
w 27	W 27	W 27	MAN O	- LAHAH
		W 0 1 0	ØD g6 ØD-0.1	ØD-0.1
- H	G		ØA ØD g6 ØD-0.2	
				단위: <i>mm</i>

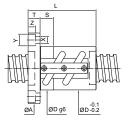
스크	류 크기		볼	기본 정격 하	·중(kgf)	너	트		플	랜ㅈ			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	_글 열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	х	Υ	Z	Q	kgf/ μm
	4	2.381	2.5×1 2.5×2	565 1020	1750 3500	54	68 90	81	12	67	32	64	15	6.6	11	6.5	M6×1P	52 101
	5	3.175	1.5×2 2.5×1 2.5×2 2.5×3 3.5×1	1180 1010 1830 2590 1350	3410 2840 5680 8520 3980	58	82 78 105 136 82	85	12	71	32	64	15	6.6	11	6.5	M8×1P	69 58 112 164 80
	6	3.969	1.5×2 2.5×1 2.5×2 3.5×1	1560 1330 2410 1770	4135 3450 6900 4830	62	100 87 123 100	88	12	75	34	68	15	6.6	11	6.5	M8×1P	70 59 114 81
32	8	4.762	1.5×2 2.5×1 2.5×2 3.5×1	2010 1720 3120 2300	5010 4180 8360 5850	66	113 106 152 113	98	15	82	38	76	15	9	14	8.5	M8×1P	76 64 123 88
	10	6.35	1.5×2 2.5×1 2.5×2 3.5×1	3000 2570 4660 3430	6530 5440 10880 7620	74	138 118 177 148	108	15	90	41	82	15	9	14	8.5	M8×1P	76 64 123 88
	12	6.35	1.5×2 2.5×1 2.5×2 3.5×1	3000 2570 4660 3430	6530 5440 10880 7620	74	160 137 208 160	108	18	90	41	82	15	9	14	8.5	M8×1P	76 64 124 88
	5	3.175	1.5×2 2.5×2 2.5×3 3.5×1	1240 1920 2720 1410	3850 6420 9630 4490	65	91 110 139 90	98	15	82	38	76	15	9	14	8.5	M8×1P	75 123 181 87
	6	3.969	2.5×2 2.5×3	2600 3680	7900 11850	65	123 159	98	15	82	38	76	15	9	14	8.5	M8×1P	126 187
36	8	4.762	2.5×2	3265	9450	70	153	114	18	92	46	92	20	11	17.5	11	M8×1P	129
30	10	6.35	1.5×2 2.5×1 2.5×2 3.5×1	3180 2720 4930 3630	7410 6180 12360 8650	75	141 131 180 151	118	18	98	45	90	15	11	17.5	11	M8×1P	83 70 136 96
	12	6.35	2.5×1 2.5×2 3.5×1	2720 4930 3630	6180 12360 8650	75	137 208 161	118	18	98	45	90	15	11	17.5	11	M8×1P	70

FDWC

FDWC

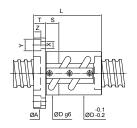

	kgf/ μm 82 69
O.D. 리드 불직경 열의수 (1x10 REV.) 전	μm 82 69 P 133 196 95 85
2.5×1 1090 3560 84 5 3.175 2.5×2 1980 7120 67 108 101 15 83 39 78 15 9 14 8.5 M8×1 2.5×3 2800 10680 139	69 P 133 196 95 85
5 3.175 2.5×2 1980 7120 67 108 101 15 83 39 78 15 9 14 8.5 M8×1 2.5×3 2800 10680 139	P 133 196 95 85
2.5×3 2800 10680 139	196 95 85
	95 85
3.5×1 1450 4980 88	85
1.5×2 1750 5300 103	71
2.5×1 1500 4420 90	/ 1
6 3.969 2.5×2 2720 8840 70 123 104 15 86 40 80 15 9 14 8.5 PT1/8	" 138
2.5×3 3850 13260 159	202
3.5×1 2000 6190 103	98
40 1.5×2 2220 6320 124	86
2.5×1 1900 5270 108 8 4.762 74 108 15 90 41 82 15 9 14 8.5 PT1/8	73
2.5×2 3450 10540 152	141
3.5×1 2540 7380 125	100
1.5×2 3370 8335 141	91
10 6.35 2.5×1 2880 6950 131 82 124 18 102 47 94 20 11 17.5 11 PT1/3	71
2.5×2 5220 13900 180	148
3.5×1 3840 9730 151	105
2.5×1 2880 6950 137	76
12 6.35 2.5×2 5220 13900 86 208 128 18 106 48 96 20 11 17.5 11 PT1/8	
3.5×1 3840 9730 161	105
6 3.969 2.5×2 2850 9870 123 2.5×3 4035 14800 159 14 8.5 PT1/8	
	155
8 4.762 2.5×2 3650 11780 158 127 18 105 52 104 20 11 17.5 11 PT1/6	228
45 2.5×2 5480 15700 180	163
10 6.35 2.5×3 7760 23550 243 132 18 110 50 100 20 11 17.5 11 PT1/8	239
2.5×1 3550 8950 140	85
12 7.144 2.5×2 6440 17900 210 132 18 110 50 100 20 11 17.5 11 PT1/5	165

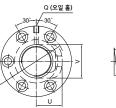

스=	1류크기		볼	기본 정격 하	중(kgf)	너	트		픝	플랜지	l		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	_	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
	5	3.175	1.5×2 1.5×3 2.5×2 3.5×1	1410 2000 2190 1610	5305 7960 8840 6190	80	108 128 113 108	114	15	96	43	86	15	9	14	8.5	PT1/8"	98 144 159 114
	6	3.969	1.5×2 2.5×2 2.5×3 3.5×1	1920 2980 4220 2190	6600 11000 16500 7700	84	111 123 159 107	118	15	100	45	90	15	9	14	8.5	PT1/8"	101 164 242 117
50	8	4.762	1.5×2 2.5×2 2.5×3 3.5×1	2515 3900 5520 2870	7810 13020 19530 9110	87	127 156 208 127	128	18	107	49	98	20	11	17.5	11	PT1/8"	104 170 250 121
	10	6.35	1.5×2 2.5×1 2.5×2 2.5×3 3.5×1	3725 3190 5790 8200 4260	10450 8710 17420 26130 12190	93	151 132 180 243 151	135	18	113	51	102	20	11	17.5	11	PT1/8"	108 91 177 261 126
	12	7.144	2.5×1 2.5×2	3700 6710	10050 20100	100	140	146	18	122	55	110	20	14	20	13	PT1/8"	92 179
55	10	6.35	2.5×2 2.5×3	6005 8510	19540 29310	102	181 243	144	18	122	54	108	20	11	17.5	11	PT1/8"	191 281
	10	6.35	2.5×1 2.5×2 2.5×3	3510 6370 9020	11200 22400 33600	108	136 189 249	154	22	130	58	116	20	14	20	13	PT1/8"	110213313
63	12	7.938	2.5×1 2.5×2	4760 8650	13820 27560	115	144 214	161	22	137	61	122	20	14	20	13	PT1/8"	112 218
	16	9.525	2.5×1 2.5×2	8050 14600	23100 46200	122	200 296	178	28	150	69	138	20	18	26	17.5	PT1/8"	144 280
	10	6.35	2.5×2 2.5×3	7130 10100	28500 42750	130	189 249	176	22	152	66	132	20	14	20	13	PT1/8"	258 380
80	12	7.938	2.5×2 2.5×3	9710 13760	35560 53340	136	220 292	182	22	158	68	136	20	14	20	13	PT1/8"	265 391
	16	9.525	2.5×2 2.5×3	16450 23300	59280 88920	143	290 386	204	28	172	77	154	30	18	26	17.5	PT1/8"	339 500

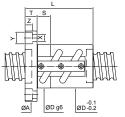

FSVC

FSVC

				ļ <u> </u>				<u>×</u>	<u>~</u>	00 ;	<u> 10</u>	JU-0.2					다	2 : mm
	류 크기			기본 정격 히	주(kaf)	너	E	=	플랜기		피트		볼트		보기	튜브	오일홀	강성
O.D.	리드	볼 직경	볼 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	A	T	W	S	Х	γ	Z	U	v	Q	kgf/ μm
	4	2.381	2.5×1	410	750	25	40	45	10	35	10	5.5	9.5	5.5	19	21	M6×1P	14
14	5	3.175	2.5×1	675	1145	25	42	45	10	35	10	5.5	9.5	5.5	19	21	M6×1P	15
15	4	2.381	2.5×1	420	800	28.5	40	48	10	38	10	5.5	9.5	5.5	17	22	M6×1P	14
15	5	3.175	2.5×1	680	1210	28.5	42	48	10	38	10	5.5	9.5	5.5	17	22	M6×1P	15
			1.5×2	805	1525		50											19
16	_	2 175	2.5×1	690	1270	21	45	- 4	12	41	1.5		٥.		20	22	MCv1D	16
16	5	3.175	2.5×2	1250	2540	31	60	54	12	41	15	5.5	9.5	5.5	20	23	M6×1P	31
			3.5×1	920	1780		50											22
			1.5×2	965	2070		50											24
	5	3.175	2.5×1	830	1730	35	45	E 0	12	16	15		0.5		22	27	M6×1P	20
	3	3.173	2.5×2	1510	3460	33	60	20	12	40	13	5.5	9.5	5.5	22	21	MOXIP	39
20			3.5×1	1110	2420		50											26
			1.5×2	1285	2545		66											24
	6	3.969	2.5×1	1100	2120	36	48	60	12	47	15	5.5	9.5	5.5	23	28	M6×1P	20
			3.5×1	1470	2970		66											28
			1.5×2	1420	3215		65											29
	6	3.969	2.5×1	1210	2680	42	50	68	12	55	15	5 5	0.5	5 5	28	33	M6×1P	24
	U	3.909	2.5×2	2190	5360	72	68	00	12	33	13	ر.ر	9.5	ر.ر	20	33	WOXII	47
25			3.5×1	1610	3750		65											34
			1.5×2	1820	3840		75											30
	10	4.762	2.5×1	1560	3200	45	65	72	16	58	15	6.6	11	6.5	29	35	M6×1P	25
			3.5×1	2080	4480		75											35
			1.5×2	1110	2960		50											31
	5	3.175	2.5×1	950	2470	44	45	70	12	56	15	66	11	65	28	35	M6×1P	26
	,	3.173	2.5×2	1720	4940		60	, 0	12	50	13	0.0	• •	0.5	20	33	WOATI	50
28			3.5×1	1270	3460		50											36
			1.5×2	1480	3605		55											32
	6	3.969	2.5×1	1270	3000	44	50	70	12	56	15	66	11	6.5	28	36	M6×1P	26
	U	3.909	2.5×2	2300	6000	77	68	70	12	50	13	0.0		5.5	20	50	IVIOX IF	51
			3.5×1	1690	4200		55											37

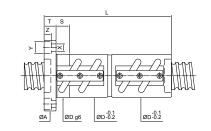



					<u>J</u>			Ø	4]	ØD (g6 <u>[</u> g	ØD-0.2	<u>!</u>					
																	난위	: mm
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트	듵	랜기	7	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	_ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Y	Z	U	v	Q	kgf/ μm
			1.5×2	1180	3410		50											34
			2.5×1	1010	2840		45											29
	5	3.175	2.5×2	1830	5680	50	60	76	12	63	15	6.6	11	6.5	30	39	M6×1P	56
			2.5×3	2590	8520		75											82
			3.5×1	1350	3980		50											40
			1.5×2	1560	4135		55											35
	6	3.969	2.5×1	1330	3450	52	50	70	12	65	15	6.6	11	65	22	40	M6×1P	29
	O	3.909	2.5×2	2410	6900	32	68	70	12	03	13	0.0		0.5	32	40	MOXIF	57
32			3.5×1	1770	4830		55											40
			1.5×2	2010	5010		70											36
	8	4.762	2.5×1	1720	4180	54	62	22	16	70	15	a	14	2 5	33	42	M6×1P	30
	U	4.702	2.5×2	3120	8360	54	86	00	10	, 0	15		17	0.5	55	72	MOZII	59
			3.5×1	2300	5850		70											42
			1.5×2	3000	6530		78											38
	10	6.35	2.5×1	2570	5440	57	68	Q1	16	73	15	a	14	2 5	37	45	M8×1P	32
	10	0.55	2.5×2	4660	10880	5,	98	71	10	, ,	15		17	0.5	5,	73	WIOXII	61
			3.5×1	3430	7620		78											44
	6	3.969	2.5×1	1430	3950	55	50	82	12	68	15	66	11	65	32	45	M6×1P	33
		3.707	2.5×2	2600	7900	33	68				.,	0.0		0.5	<i>J</i> 2		MOXII	63
36			1.5×2	3180	7410		82											41
30	10	6.35	2.5×1	2720	6180	62	72	104	18	82	20	11	17.5	11	40	49	M6×1P	35
		0.55	2.5×2	4930	12360	02	102	701		52	20		. , .5			.,		68
			3.5×1	3630	8650		82											48

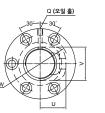

제품사양 외부 볼 순환 너트

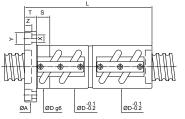
FSVC

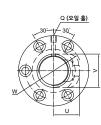
				1				_				,,,,	=				단위	2 : mm
스크	류 크기		볼	기본 정격 하	·중(kgf)	너	트	플	랜지		피트		볼트		복귀	튜브	오일 홀	강성
O.D.	리드	볼 직경	_ 열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	×	Y	z	U	V	Q	kgf/ μm
			1.5×2	1280	4270		55											41
			2.5×1	1090	3560		50											34
	5	3.175	2.5×2	1980	7120	58	65	92	16	72	15	9	14	8.5	34	47	M8×1P	66
			2.5×3	2800	10680		80											98
			3.5×1	1450	4980		55											47
			1.5×2	1750	5300		60											42
			2.5×1	1500	4420		54											35
	6	3.969	2.5×2	2720	8840	60	72	94	16	76	15	9	14	8.5	36	48	PT1/8"	69
40			2.5×3	3850	13260		90											101
			3.5×1	2000	6190		60											49
			1.5×2	2220	6320		70											43
	8	4.762	2.5×1	1900	5270	62	62	96	16	78	15	9	14	8 5	38	50	PT1/8"	36
	J	1.7 02	2.5×2	3450	10540	02	86	,,		, 0	13	_		0.5	50	50	11170	70
			3.5×1	2540	7380		70											50
			1.5×2	3370	8335		82											45
	10	6.35	2.5×1	2880	6950	65	72	106	18	85	20	11	17.5	11	42	52	PT1/8"	35
	10	0.55	2.5×2	5220	13900	03	102	100		05	20	ľ	17.5			32	11170	74
			3.5×1	3840	9730		82											52
	10	6.35	2.5×1	3020	7850	70	74	112	18	90	20	11	17.5	11	48	58	PT1/8"	42
45		0.55	2.5×2	5480	15700	,,,	104						17.5				11170	81
-,3	12	7.144	2.5×1	3550	8950	74	87	122	18	97	20	14	20	13	49	60	PT1/8"	43
	12	7.177	2.5×2	6440	17900	, ¬	123	122	.0	,,	20		20		.,	-00	1 1 1/0	82

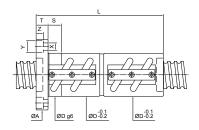


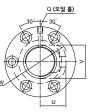
				<u> </u>		!	ØA	ØD	96 [ØD-0	.2				FLC	ol		
				-16 -13 -	1 (1 - 6)		_			-1	-1-				— ¬!			P : mm
스크	류크기		볼	기본 정격 혀	마중(kgf)	너	트	ŧ	플랜기	Ч	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
			1.5×2	1410	5305		63											49
	5	3.175	1.5×3	2000	7960	70	73	104	16	86	15	9	14	8.5	40	57	PT1/8"	72
			3.5×1	1610	6190		63											57
	6	3.969	2.5×2	2980	11000	72	75	106	16	88	15	9	14	8.5	43	59	PT1/8"	82
	ŭ	51,707	2.5×3	4220	16500		93			-		_		0.5		-	, 0	121
	8	4.762	2.5×2	3900	13020	75	88	116	18	95	20	11	17.5	11	45	60	PT1/8"	85
50	ŭ	02	2.5×3	5520	19530	,,,	112			,,			.,.5				, 0	125
			1.5×2	3725	10450		84											54
			2.5×1	3190	8710		74											45
	10	6.35	2.5×2	5790	17420	78	104	119	18	98	20	11	17.5	11	48	62	PT1/8"	88
			2.5×3	8200	26130		134											130
			3.5×1	4260	12190		84											63
	12	7.144	2.5×1	3700	10050	82	87	128	22	105	20	14	20	13	52	64	PT1/8"	46
			2.5×2	6710	20100		123										, -	89
55	10	6.35	2.5×2	6005	19540	84	100		18	103	20	11	17.5	11	54	68	PT1/8"	95
			2.5×3	8150	29310		130										, -	140
			2.5×1	3510	11200		77											55
	10	6.35	2.5×2	6370	22400	90		132	20	110	20	11	17.5	11	53	76	PT1/8"	106
			2.5×3	9020	33600		137											156
63			2.5×1	4770	13780		88											59
	12	7.938	2.5×2	8650	27560	94		142	22	117	20	14	20	13	57	76	PT1/8"	113
			2.5×3	12250	41340		160											167
	16	9.525	2.5×1	8050	23100	100		150	22	123	20	14	20	13	62	79	PT1/8"	72
			2.5×2	14600	46200		153											140
	10	6.35	2.5×2	7130	28500	115	109	163	22	137	20	14	20	13	64	91	PT1/8"	129
			2.5×3	10100	42750		139											190
80	12	7.938	2.5×2	9710	35560	120	125	169	22	143	25	14	20	13	67	94	PT1/8"	137
			2.5×3	13760	53340		159											202
	16	9.525	2.5×2	16450	59280	125	156	190	28	154	25	18	26	17.5	70	96	PT1/8"	170
			2.5×3	23300	88920		204											250

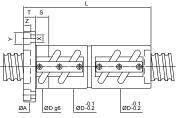

FDVC


FDVC

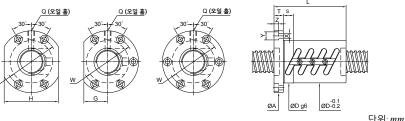

								_					. .					
스크	류크기		볼	기본 정격 ㅎ	남(kgf)	너	트	늘	들랜기	4	피트		볼트		복귀	튜브	오일 홀	강성
O.D.	리드	볼 직경		동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	W	S	х	Υ	Z	U	٧	Q	kgf/ μm
			1.5×2	805	1525		90											39
16	5	3.175	2.5×1	690	1270	31	80	E 1	12	41	15		0.5		20	22	M6×1P	33
10	Э	3.173	2.5×2	1250	2540	31	110	54	12	41	13	5.5	9.5	5.5	20	23	MOXIP	63
			3.5×1	920	1780		90											45
			1.5×2	965	2070		90											47
	_	2 175	2.5×1	830	1730	25	80		12		1.5		٥.		22	27	MC: 1D	40
	5	3.175	2.5×2	1510	3460	35	110	58	12	40	15	5.5	9.5	5.5	22	21	M6×1P	77
20			3.5×1	1110	2420		90											55
			1.5×2	1285	2545		104											49
	6	3.969	2.5×1	1100	2120	36	92	60	12	47	15	5.5	9.5	5.5	23	28	M6×1P	41
			3.5×1	1470	2970		104											56
			1.5×2	1065	2575		90											57
	5	3.175	2.5×1	910	2150	40	80	61	12	E 2	15		0.5		25	22	M6×1P	48
	Э	3.173	2.5×2	1650	4300	40	110	04	12	32	13	5.5	9.5	5.5	25	32	MOXIP	92
			3.5×1	1210	3010		90											65
			1.5×2	1420	3215		104											58
25	6	3.969	2.5×1	1210	2680	42	92	60	12		15		0.5		20	22	M6×1P	49
	0	3.969	2.5×2	2190	5360	42	128	80	12	55	15	5.5	9.5	5.5	28	33	IVIOXIP	94
			3.5×1	1610	3750		104											67
			1.5×2	1820	3840		136											60
	10	4.762	2.5×1	1560	3200	45	122	72	16	58	15	6.6	11	6.5	29	35	M6×1P	50
			3.5×1	2080	4480		136											69
			1.5×2	1110	2960		90											62
	5	3.175	2.5×1	950	2470	44	80	70	12	E 6	15		11	<i>c</i> =	20	25	M61D	52
)	3.173	2.5×2	1720	4940	44	110	70	12	30	13	0.0	11	0.5	20	33	M6×1P	101
20			3.5×1	1270	3460		90											72
28	28		1.5×2	1480	3605		110											63
	6	3.969	2.5×1	1270	3000	44	98	70	12	56	15	66	11	6 5	20	26	M6v1D	53
	О	3.909	2.5×2	2300	6000	44	134	70	12	50	15	0.0	1.1	0.5	28	30	M6×1P	103
			3.5×1	1690	4200		110											73




																	단위	2 : mm
스크	류크기		볼	기본 정격 혀	卡중(kgf)	너	트	픹	랜지	1	피트		볼트		복귀	튜브	오일 홀	강성
O.D.	리드	볼 직경	ල이 스	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	z	U	٧	Q	kgf/ μm
			1.5×2	1180	3410		90											69
			2.5×1	1010	2840		80											58
	5	3.175	2.5×2	1830	5680	50	110	76	12	63	15	6.6	11	6.5	30	39	M6×1P	112
			2.5×3	2590	8520		140											164
			3.5×1	1350	3980		90											80
			1.5×2	1560	4135		104											70
	6	3.969	2.5×1	1330	3450	52	92	78	12	65	15	66	11	6.5	32	40	M6×1P	59
	Ŭ	3.707	2.5×2	2410	6900	32	128	, 0		05	13	0.0	• •	0.5	32	.0	1110/11	114
32			3.5×1	1770	4830		104											81
			1.5×2	2010	5010		126											73
	8	4.762	2.5×1	1720	4180	54	110	88	16	70	15	9	14	8.5	33	42	M6×1P	61
	_		2.5×2	3120	8360		158											118
			3.5×1	2300	5850		126											84
			1.5×2	3000	6530		142											76
	10	6.35	2.5×1	2570	5440	57	122	91	16	73	15	9	14	8.5	37	45	M8×1P	64
			2.5×2	4660	10880		182											123
			3.5×1	3430	7620		142											88
	6	3.969	2.5×1	1430	3950	55	92	82	12	68	15	6.6	11	6.5	32	45	M6×1P	65
			2.5×2	2600	7900		128											126
36			1.5×2	3180	7410		144											83
	10	6.35	2.5×1	2720	6180	62	124	104	18	82	20	11	17.5	11	40	49	M6×1P	70
			2.5×2	4930	12360		184											136
			3.5×1	3630	8650		144											90


FDVC

				II				[-			Ľ					단위	2 : mm
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트	플	랜지	1	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	_ອ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
			1.5×2	1280	4275		94											82
			2.5×1	1090	3560		84											69
	5	3.175	2.5×2	1980	7120	58	114	92	16	72	15	9	14	8.5	34	47	M8×1P	133
			2.5×3	2800	10680		144											196
			3.5×1	1450	4980		94											95
			1.5×2	1750	5300		108											85
			2.5×1	1500	4420		96											71
	6	3.969	2.5×2	2720	8840	60	132	94	16	76	15	9	14	8.5	36	48	PT1/8"	138
40			2.5×3	3850	13260		168											202
70			3.5×1	2000	6190		108											98
			1.5×2	2220	6320		126											86
	8	4.762	2.5×1	1900	5270	62	110	96	16	78	15	a	14	2.5	38	50	PT1/8"	73
	0	4.702	2.5×2	3450	10540	02	158	90	10	70	13	,	14	0.5	50	30	111/0	141
			3.5×1	2540	7380		126											100
			1.5×2	3370	8335		152											91
	10	6.35	2.5×1	2880	6950	65	132	106	18	85	20	11	17.5	11	42	52	PT1/8"	71
	10	0.55	2.5×2	5220	13900	03	192	100	10	03	20		17.5	٠.	72	32	11170	148
			3.5×1	3840	9730		152											105
	10	6.35	2.5×1	3020	7850	70	134	112	18	90	20	11	17.5	11	48	58	PT1/8"	84
45		0.55	2.5×2	5480	15700		194	112					17.5				11170	163
	12	7.144	2.5×1	3550	8950	74	158	122	18	97	20	14	20	13	49	60	PT1/8"	85
	12	7.144	2.5×2	6440	17900	, 4	230	122	10	,	20		20	, ,	73	00	1 1 1/0	165



																	단위	2 : mm
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트	플	들랜기	۲	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경		동정격 (1×106 REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
	5	3.175	1.5×2 1.5×3 3.5×1	1410 2000 1610	5305 7960 6190	70	107 127 107		16	86	15	9	14	8.5	40	57	PT1/8"	98 144 114
	6	3.969	2.5×2 2.5×3	2980 4220	11000 16500	72	134 170	106	16	88	15	9	14	8.5	43	59	PT1/8"	164 242
50	8	4.762	2.5×2 2.5×3	3900 5520	13020 19530	75	160 208	116	18	95	20	11	17.5	11	45	60	PT1/8"	170 250
30	10	6.35	1.5×2 2.5×1 2.5×2 2.5×3	3725 3190 5790 8200	10450 8710 17420 26130	78	154 134 194 254	119	18	98	20	11	17.5	11	48	62	PT1/8"	119 91 177 261
	12	7.144	3.5×1 2.5×1 2.5×2	4260 3700 6710	12190 10050 20100	82	154 160 232	128	22	105	20	14	20	13	52	64	PT1/8"	126 92 179
55	10	6.35	2.5×2 2.5×3	6005 8510	19540 29310	84	194 254	125	18	103	20	11	17.5	11	54	68	PT1/8"	191 281
	10	6.35	2.5×1 2.5×2 2.5×3	3510 6370 9020	11200 22400 33600	90	136 196 256		20	110	20	11	17.5	11	53	76	PT1/8"	110 213 313
63	12	7.938	2.5×1 2.5×2 2.5×3	4760 8650 12250	13820 27560 41340	94	160 232 304	142	22	117	20	14	20	13	57	76	PT1/8"	112 218 322
	16	9.525	2.5×1 2.5×2	8050 14600	23100 46200	100	200 296	150	22	123	20	14	20	13	62	79	PT1/8"	144 280
	10	6.35	2.5×2 2.5×3	7130 10100	28500 42750	115	200 260	163	22	137	20	14	20	13	64	91	PT1/8"	258 380
80	12	7.938	2.5×2 2.5×3	9710 13760	35560 53340	120	232 302	169	22	143	25	14	20	13	67	94	PT1/8"	265 391
	16	9.525	2.5×2 2.5×3	16450 23300	59280 88920	125	302 398	190	28	154	25	18	26	17.5	70	96	PT1/8"	339 500

FOWC

FOWC

													00	_	[90-		단위	<u> </u> : mm
스크	류크기		볼	기본 정격 ㅎ	卡중(kgf)	너	트		플	랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	_ 열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	Т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	4	2.381	2.5×1×(2) 3.5×1×(2)	450 600	1060 1480	40	50 60	63.5	11	51	21	42	10	5.5	9.5	5.5	M6×1P	32 49
20	5	3.175	2.5×1×(2) 3.5×1×(2)	830 1110	1730 2420	44	56 65	67	11	55	26	52	15	5.5	9.5	5.5	M6×1P	40 55
	6	3.969	2.5×1×(2)	1100	2120	48	67	71	11	59	27	54	15	5.5	9.5	5.5	M6×1P	41
	8	3.969	2.5×1×(2)	1100	2120	48	78	75	13	61	27	54	15	6.6	11	6.5	M6×1P	41
	4	2.381	2.5×1×(2) 2.5×2×(2)	510 930	1355 2710	46	50 74	69	11	57	26	52	15	5.5	9.5	5.5	M6×1P	43 84
	5	3.175	2.5×1×(2) 2.5×2×(2)	910 1650	2150 4300	50	55 85	73	11	61	28	56	15	5.5	9.5	5.5	M6×1P	48 92
25	6	3.969	2.5×1×(2) 2.5×2×(2)	1210 2190	2680 5360	53	62 98	76	11	64	29	58	15	5.5	9.5	5.5	M6×1P	49 94
	8	4.762	2.5×1×(2)	1560	3200	58	77	85	13	71	32	64	15	6.6	11	6.5	M6×1P	50
	10	4.762	2.5×1×(2)	1560	3200	58	100	85	15	71	32	64	15	6.6	11	6.5	M6×1P	50
	5	3.175	2.5×1×(2) 2.5×2×(2)	950 1720	2470 4940	55	56 86	83	12	69	31	62	15	6.6	11	6.5	M8×1P	52 101
28	6	3.969	2.5×1×(2) 2.5×2×(2)	1270 2300	3000 6000	55	63 100	83	12	69	31	62	15	6.6	11	6.5	M8×1P	53 103
	10	4.762	1.5×1×(2)	1045	2120	60	74	93	15	76	36	72	15	9	14	8.5	M8×1P	34
	4	2.381	2.5×1×(2) 2.5×2×(2)	565 1020	1750 3500	54	50 76	81	12	67	32	64	15	6.6	11	6.5	M6×1P	52 101
	5	3.175	2.5×1×(2) 2.5×2×(2)	1010 1830	2840 5680	58	57 87	85	12	71	32	64	15	6.6	11	6.5	M8×1P	58 112
	6	3.969	2.5×1×(2) 2.5×2×(2)	1330 2410	3450 6900	62	63 99	88	12	75	34	68	15	6.6	11	6.5	M8×1P	59 114
32	8	4.762	1.5×1×(2) 2.5×1×(2)	1110 1720	2510 4180	66	64 80	100	15	82	38	76	15	9	14	8.5	M8×1P	37 61
	10	6.35	1.5×1×(2) 2.5×1×(2)	1660 2570	3260 5440	74	78 97	108	15	90	41	82	15	9	14	8.5	M6×1P	39 64
	12	6.35	1.5×1×(2) 2.5×1×(2)	1660 2570	3260 5440	74	88 110	108	18	90	41	82	15	9	14	8.5	M8×1P	39 64

				1													L 1	: m
스크류	류크기		볼	기본 정격 혀	ŀ중(kgf)	너	트		į	플랜지	1		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	Х	Υ	Z	Q	kg, μπ
	5	3.175	2.5×1×(2) 2.5×2×(2)		3210 6420	65	60 90	98	15	82	38	76	15	9	14	8.5	M8×1P	6· 12
36	6	3.969	2.5×1×(2) 2.5×2×(2)		3950 7900	65	66 102	98	15	82	38	76	15	9	14	8.5	M8×1P	6. 12
	10	6.35	1.5×1×(2) 2.5×1×(2)	1750 2720	3710 6180	75	81 103	118	18	98	45	90	15	11	17.5	11	M8×1P	4. 7
	5	3.175	2.5×1×(2) 2.5×2×(2)		3560 7120	67	60 90	101	15	83	39	78	15	9	14	8.5	M8×1P	6 13
	6	3.969	2.5×1×(2) 2.5×2×(2)	1500 2720	4420 8840	70	66 102	104	15	86	40	80	15	9	14	8.5	PT1/8"	7 13
40	8	4.762	2.5×1×(2) 2.5×2×(2)	1900 3450	5270 10540	74	83 131	108	15	90	41	82	15	9	14	8.5	PT1/8"	7. 14
	10	6.35	$1.5\times1\times(2)$ $2.5\times1\times(2)$ $3.5\times1\times(2)$		4710 6950 9730	82	81 103 121	124	18	102	47	94	20	11	17.5	11	PT1/8"	4° 7° 10
	12	6.35	2.5×1×(2)	2880	6950	86	112	128	18	106	48	96	20	11	17.5	11	PT1/8"	7
45	10	6.35	2.5×1×(2)	3020	7850	88	101	132	18	110	50	100	20	11	17.5	11	PT1/8"	8
77	12	7.144	2.5×1×(2)	3550	8950	90	112	132	18	110	50	100	20	11	17.5	11	PT1/8"	8
	5	3.175	2.5×1×(2)	1210	4420	80	60	114	15	96	43	86	15	9	14	8.5	PT1/8"	8
	6	3.969	2.5×2×(2)	2980	11000	84	103	118	15	100	45	90	15	9	14	8.5	PT1/8"	16
	8	4.762	2.5×2×(2)	3900	13020	87	134	129	18	107	49	98	20	11	17.5	11	PT1/8"	17
50	10	6.35	$2.5\times1\times(2)$ $2.5\times2\times(2)$ $3.5\times1\times(2)$	3190 5790 4260	8710 17420 12190	93	101161121	135	18	113	51	102	20	11	17.5	11	PT1/8"	9 17 17
	12	7.144	2.5×1×(2)	3700	10050	100	116	146	22	122	55	110	20	14	20	13	PT1/8"	9
55	10	6.35	2.5×1×(2) 2.5×2×(2)		9770 19540	102	101 161	144	18	122	54	108	20	11	17.5	11	PT1/8"	9
63	10	6.35	2.5×1×(2) 2.5×2×(2)	3510 6370	11200 22400	108	105 165	154	22	130	58	116	20	14	20	13	PT1/8"	11 21
	12	7 938	$2.5 \times 1 \times (2)$	4770	13780	115	124	161	22	137	61	122	20	14	20	13	PT1/8"	1

FSWE

하이리드 볼스크류는 21세기 고속화 공작 기계의 중요한 요소이며 필수 부품입니다. 고속절 삭기술은 20세기 공작 기계 기술에 있어 중요한 성과이며 하이리드 볼스크류는 고속화 공작 기계에서 중요한 역할을 담당하고 있습니다.

<u>특징</u>

대 리드 볼스크류는 고강도, 저소음, 열제어 특성을 가진 탁월한 제품입니다. *PMI* 의 설계와 취급법은 다음과 같습니다:

높은 DN 값

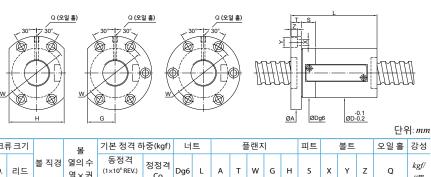
DN 값은 일반적인 경우는 130,000 입니다. 특별한 경우 예를 들면 고정 엔드의 경우에 DN 값은 140,000 만큼 큽니다. 특별한 제품을 원하시면 PMI에 문의하십시오.

고속

PMI 의 고속 볼스크류는 고성능 절삭을 하는 공작기계를 위해100 m/min 이상의 급속 이송을 가능하게 합니다.

고강성

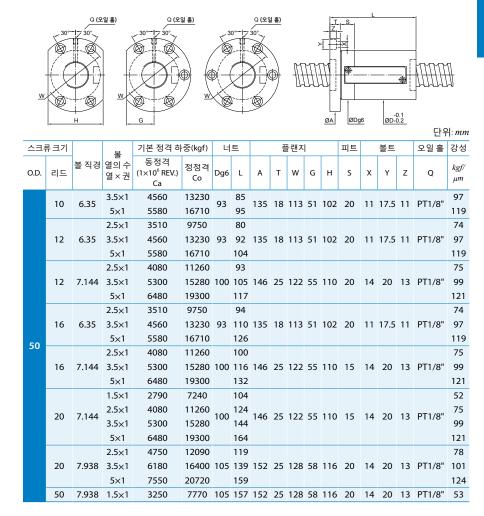
스크류와 볼너트 양쪽 다 고강도 및 내구성을 유지하기 위하여 특정 경도와 케이스 깊이에 맞게 표면 경화되었습니다.


복합 나사 기동은 고강성 및 내구성을 위해 볼너트 안에 장착된 더욱 강한 볼을 만드는데 유용합니다.

저소음

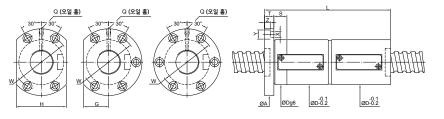
볼 순환 튜브의 특수 설계(특허 출원중)로 볼너트 안의 원활한 볼 순환을 제공합니다. 또한 이 것은 튜브를 파손하지 않고서도 튜브 안으로 볼이 안전하고 빠르게 회전할 수 있도록 합니다.

전체 나사에 걸쳐 정확한 볼 중심 직경 (ball circle diameter, BCD) 은 지속적인 항력 토오크와 저소음을 위한 것입니다.

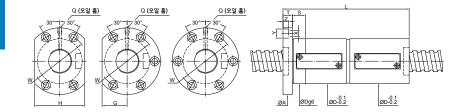

스크.	류크기		볼	기본 정격 혀	卡중(kgf)	너	트		플	들랜지	1		피트		볼트		오일홀	강성
O.D.	리드	볼 직경	교 열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
12	10	2.381	2.5 × 1	420	720	30	50	50	10	40	16	32	10	4.5	8	4.4	M6 × 1P	20
	10	2.000	2.5×1	1210	2380	10	63	72.5	12		25	۲0	10		٥٢		M6×	34
	10	3.969	3.5×1	1580	3230	46	73	73.5	13	59	25	50	10	5.5	9.5	5.5	1P	45
20	16	2.060	1.5 × 1	830	1530	10	63	72.5	12		25		10		٥.		M6×	24
20	16	3.969	2.5×1	1210	2380	46	79	73.5	13	59	25	50	10	5.5	9.5	5.5	1P	34
	20	3.969	1.5 × 1	830	1530	46	70	73	13	59	25	50	10	5.5	9.5	5.5	M6 × 1P	24
	16	3.969	1.5 × 1	920	1930	58	68	85	15	71	32	64	15	6.6	11	6.5	M6×	28
			2.5 × 1	1340	3000		84										1P	40
25			1.5×1	1170	2300		74										M6×	29
	20	4.762	2.5 × 1	1710	3580	58	94		15	71	32	64	15	6.6	11	6.5	1P	42
			3.5 × 1	2220	4860		114											55
			1.5 × 1	1010	2480		67										140	33
	16	3.969	2.5 × 1	1470	3860	62	83	108	15	90	41	82	15	9	14	8.5	M8 ×	48
			3.5 × 1	1910	5240		99										1P	63
			5 × 1	2340	6620		115											77
	16	6.35	2.5×1 3.5×1	2830 3680	6090 8270	74	92	100	10	00	41	02	1.5	11	175	11	$M8 \times$	54
	10	0.55	5 × 1	4490	10450	74	124	108	10	00	41	02	15	11	17.5	11	1P	69 85
32			1.5 × 1	1010	2480		74											33
			2.5 × 1	1470	3860		94										M8×	48
	20	3.969	3.5×1	1910	5240	62	114	108	15	90	41	82	15	9	14	8.5	1P	63
			5 × 1	2350	6610		134										"	77
			2.5 × 1	2830	6090		104											54
	20	6.35	3.5 × 1	3680	8270	74		108	18	88	41	82	15	11	17.5	11	M8 ×	69
			5 × 1	4490	10450		144										1P	85

FSWE

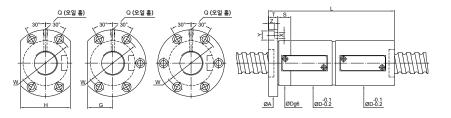
FSWE


Q (오일 :	<u>Q (모일 홀)</u>	Q (오일 홀)	T ₁ S ₋₁	
30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -	30 - 30°	30° - 30° -		
н	G		ØA ØDg6	-0.1 ØD-0.2 다위: mm

																	난두	2 : <i>mm</i>
스크	류크기		볼	기본 정격 ㅎ	ト중(kgf)	너	트		듵	플랜지			피트		볼트		오일 홀	강성
O.D.	리드	볼 직경	열의수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	Х	Υ	Z	Q	kgf/ μm
	10	6.35	3.5×1	3890	9390	75	84	110	10	98	15	00	15	11	175	11	M8×1P	76
	10	0.33	5×1	4750	11860	/3	94	110	10	90	43	90	15	'''	17.5	11	WOXIP	93
			2.5×1	2990	6920		85											58
	12	6.35	3.5×1	3890	9390	75	97	118	18	98	45	90	15	11	17.5	11	M8×1P	76
			5×1	4750	11860		109											93
36			2.5×1	2990	6920		91											58
30	16	6.35	3.5×1	3890	9390	75	107	118	18	98	45	90	15	11	17.5	11	M8×1P	76
			5×1	4750	11860		123											93
			1.5×1	2050	4450		91											41
	20	6.35	2.5×1	2990	6920	75	111	110	10	98	45	00	15	11	17.5	11	PT1/8"	58
	20	0.33	3.5×1	3890	9390	/5	131	110	10	90	43	90	15		17.5	11	P11/6	76
			5×1	4750	11860		151											93
	10	6.35	3.5×1	4130	10560	86	86	120	10	106	40	00	15	11	17.5	11	PT1/8"	82
	10	0.55	5×1	5050	13340	80	96	120	10	100	49	90	13	''	17.3	'''	F11/6	101
			2.5×1	3180	7780		86											63
	12	6.35	3.5×1	4130	10560	86	98	128	18	106	49	98	15	11	17.5	11	PT1/8"	82
			5×1	5050	13340		110											101
			2.5×1	3180	7780		92											63
	16	6.35	3.5×1	4130	10560	86	108	128	18	106	49	98	15	11	17.5	11	PT1/8"	82
40			5×1	5050	13340		124											101
			2.5×1	3740	8790		92											65
	16	7.144	3.5×1	4870	11930	86	108	128	18	106	49	98	15	11	17.5	11	PT1/8"	84
			5×1	5950	15070		124											103
			1.5×1	2180	5000		84											43
	20	6.35	2.5×1	3180	7780	86	104	128	1Ω	106	10	08	15	11	17.5	11	PT1/8"	63
	20	0.55	3.5×1	4130	10560	00	124	120	10	100	72	90	13	' '	17.3	' '	1 11/0	82
			5×1	5050	13340		144											101
	40	6.35	1.5×1	2180	5000	86	130	128	18	106	49	98	15	11	17.5	11	PT1/8"	43


FSWE

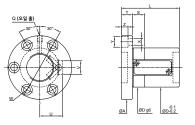
																	근ㄱ	- : mm
스크	류크기		볼	기본 정격 히	·중(kgf)	너	트		į	플랜지	:		피트		볼트		오일 홀	강성
O.D.	리드	볼 직경	교 열의 수 열 × 권	동정격 (1×106 REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	х	Υ	Z	Q	kgf/ μm
	10	6.35	3.5×1 5×1	5030 6150	17020 21500	108	86 96	154	22	130	58	116	20	14	20	13	PT1/8"	115 141
	12	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	108	84 96 108	154	22	130	58	116	20	14	20	13	PT1/8"	87 115 141
	12	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	115	90 102 114	161	22	137	61	122	20	14	20	13	PT1/8"	89 117 145
63	16	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	115	97 113 129	161	22	137	61	122	20	14	20	13	PT1/8"	89 117 145
	16	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	120	112 128 144	180	28	150	72	144	25	18	26	17.5	PT1/8"	91 120 147
	20	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	108	104 124 144	154	22	130	58	116	20	14	20	13	PT1/8"	87 115 141
	20	9.525	2.5×1 3.5×1 5×1	8870 11530 14090	25870 35110 44350	122	120 140 160	182	28	150	72	144	25	18	26	17.5	PT1/8"	105 136 167
	10	6.35	3.5×1 5×1	5630 6880	21660 27360	130	90 100	176	22	152	66	132	20	14	20	13	PT1/8"	133 164
	12	7.938	3.5×1 5×1	7670 9380	27030 34140	136	101 113	182	22	158	68	136	20	14	20	13	PT1/8"	143 177
80	16	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	143	108 124 140	204	28	172	77	154	30	18	26	17.5	PT1/8"	124 162 201
	20	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	143	120 140 160	204	28	172	77	154	30	18	26	17.5	PT1/8"	124 162 201
100	16	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	170	115 131 147	243	32	205	91	182	30	22	32	21.5	PT1/8"	139 182 226
100	20	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	170	128 148 168	243	32	205	91	182	30	22	32	21.5	PT1/8"	139 182 226



																	단위	2 : mm
스크	류크기		볼	기본 정격 히	중(kgf)	너	트		듵	틀랜지	1		피트		볼트		오일 홀	강성
O.D.	리드	볼 직경	교 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
12	10	2.381	2.5 × 1	420	720	30	102	50	10	40	16	32	10	4.5	8	4.4	M6 × 1P	30
	10	2.000	2.5×1	1210	2380	4.0	113		12		25		10		0.5		M6×	51
	10	3.969	3.5×1	1580	3230	46	133	73.5	13	59	25	50	10	5.5	9.5	5.5	1P	68
20	16	3.969	1.5 × 1	830	1530	46	128	72 5	12	F0	25	F0	10		0.5		M6×	35
20	16	3.909	2.5×1	1210	2380	40	160	73.5	13	39	25	30	10	5.5	9.5	5.5	1P	51
	20	3.969	1.5 × 1	830	1530	46	130	73	13	59	25	50	10	5.5	9.5	5.5	M6 × 1P	35
	16	3.969	1.5×1	920	1930	58	126	25	15	71	32	61	15	66	11	65	M6×	41
	10	3.909	2.5 × 1	1340	3000	36	158	65	13	/ 1	32	04	13	0.0	''	0.5	1P	61
25	20	4.762	1.5×1 2.5×1 3.5×1	1170 1710 2220	2300 3580 4860	58	154 194 234	85	15	71	32	64	15	6.6	11	6.5	M6 × 1P	43 63 83
			1.5×1	1010	2480		132											49
			2.5×1	1470	3860		164										M8×	73
	16	3.969	3.5 × 1	1910	5240	62	196	108	15	90	41	82	15	9	14	8.5	1P	96
			5 × 1	2340	6620		228											120
			2.5 × 1	2830	6090		173										140	80
	16	6.35	3.5 × 1	3680	8270	74	205	108	18	90	41	82	15	11	17.5	11	M8 ×	105
22			5 × 1	4490	10450		237										1P	131
32			1.5 × 1	1010	2480		134											49
	20	3.969	2.5×1	1470	3860	62	174	108	15	90	/ 11	82	15	9	14	Ω 5	$M8 \times$	73
	20	3.909	3.5×1	1910	5240	02	214	100	13	90	41	02	13	9	14	0.5	1P	96
			5 × 1	2350	6610		254											120
			2.5 × 1	2830	6090		204										M8×	80
	20	6.35	3.5 × 1	3680	8270	74		108	18	88	41	82	15	11	17.5	11	1P	105
			5 × 1	4490	10450		284											131

FDWE

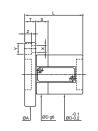
																	단위	2 : mm
	크류 L기		볼	기본 정격 하	중(kgf)	너	트		픨	들랜지			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	열의 수 열 x 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	Н	S	х	Y	Z	Q	kgf/ μm
	10	6.35	3.5×1 5×1	3890 4750	9390 11860	75	155 175	118	18	98	45	90	15	11	17.5	11	M8×1P	115 143
	12	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	75	140 164 188	118	18	98	45	90	15	11	17.5	11	M8×1P	88 115 143
36	16	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	75	171 203 235	118	18	98	45	90	15	11	17.5	11	M8×1P	88 115 143
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2050 2990 3890 4750	4450 6920 9390 11860	75	164 204 244 284	118	18	98	45	90	15	11	17.5	11	PT1/8"	59 88 115 143
	10	6.35	3.5×1 5×1	4130 5050	10560 13340	86	155 175	128	18	106	49	98	15	11	17.5	11	PT1/8"	125 155
	12	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	86	141 165 189	128	18	106	49	98	15	11	17.5	11	PT1/8"	95 125 155
40	16	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	86	173 205 237	128	18	106	49	98	15	11	17.5	11	PT1/8"	95 125 155
40	16	7.144	2.5×1 3.5×1 5×1	3740 4870 5950	8790 11930 15070	86	173 205 237	128	18	106	49	98	15	11	17.5	11	PT1/8"	98 128 159
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2180 3180 4130 5050	5000 7780 10560 13340	86	143 183 223 163	128	18	106	49	98	15	11	17.5	11	PT1/8"	64 95 125 155
	40	6.35	1.5×1	2180	5000	86	242	128	18	106	49	98	15	11	17.5	11	PT1/8"	64

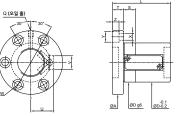


																	단:	위: <i>mm</i>
스크루	류크기		볼	기본 정격 히	중(kgf)	너	트		į	플랜ㅈ			피트		볼트		오일홀	강성
O.D.	리드	볼 직경	ョ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	н	S	х	Y	z	Q	kgf/ μm
	10	6.35	3.5×1	4560	13230	93	155	135	12	113	51	102	20	11	175	11	PT1/8"	149
	10	0.55	5×1	5580	16710	,,	175	133	10	113	٥,	102	20		17.5	• •	11170	185
			2.5×1	3510	9750		141											112
	12	6.35	3.5×1	4560	13230	93	165	135	18	113	51	102	20	11	17.5	11	PT1/8"	149
			5×1	5580	16710		189											185
			2.5×1	4080	11260		161											114
	12	7.144	3.5×1	5300	15280	100	185	146	25	122	55	110	20	14	20	13	PT1/8"	151
			5×1	6480	19300		209											187
			2.5×1	3510	9750		174											112
	16	6.35	3.5×1	4560	13230	93	206	135	18	113	51	102	20	11	17.5	11	PT1/8"	149
EO			5×1	5580	16710		238											185
50			2.5×1	4080	11260		173											114
	16	7.144	3.5×1	5300	15280	100	205	146	25	122	55	110	20	14	20	13	PT1/8"	151
			5×1	6480	19300		137											187
			1.5×1	2790	7240		164											77
	20	7114	2.5×1	4080	11260	100	204	146	25	122		110	20		20	12	DT1 (0II	114
	20	7.144	3.5×1	5300	15280	100	244	146	25	122	55	110	20	14	20	13	PT1/8"	151
			5×1	6480	19300		284											187
			2.5×1	4750	12090		219											117
	20	7.938	3.5×1	6180	16400	105	259	152	25	128	58	116	20	14	20	13	PT1/8"	154
			5×1	7550	20720		299											191
	50	7.938	1.5×1	3250	7770	105	305	152	25	128	58	116	20	14	20	13	PT1/8"	79

FDWE

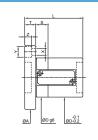
FSVE


스크	류크기			기본 정격 히	·중(kgf)	너	트		-	플랜지			피트		볼트	<u> </u>	오일홀	강성
O.D.	리드	볼 직경	볼 열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	G	Н	S	х	Υ	Z	Q	kgf/ μm
	10	6.35	3.5×1 5×1	5030 6150	17020 21500	108	155 175	154	22	130	58	116	20	14	20	13	PT1/8"	178 220
	12	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	108	153177201	154	22	130	58	116	20	14	20	13	PT1/8"	134 178 220
	12	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	115	158 182 206	161	22	137	61	122	20	14	20	13	PT1/8"	136 180 224
63	16	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	115	177 209 241	161	22	137	61	122	20	14	20	13	PT1/8"	136 180 224
	16	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	120	207 239 271	180	28	150	72	144	25	18	26	17.5	PT1/8"	139 184 228
	20	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	108	205 245 285	154	22	130	58	116	20	14	20	13	PT1/8"	134 178 220
	20	9.525	2.5×1 3.5×1 5×1	8870 11530 14090	25870 35110 44350	122	219 259 299	182	28	150	72	144	25	18	26	17.5	PT1/8"	158 208 258
	10	6.35	3.5×1 5×1	5630 6880	21660 27360	130	159 179	176	22	152	66	132	20	14	20	13	PT1/8"	207 256
	12	7.938	3.5×1 5×1	7670 9380	27030 34140	136	184 208	182	22	158	68	136	20	14	20	13	PT1/8"	222 275
80	16	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	143	188 220 252	204	28	172	77	154	30	18	26	17.5	PT1/8"	189 251 311
	20	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	143	220 260 300	204	28	172	77	154	30	18	26	17.5	PT1/8"	189 251 311
100	16	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	170	211 243 275	243	32	205	91	182	30	22	32	21.5	PT1/8"	213 283 351
100	20	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	170	228 268 308	243	32	205	91	182	30	22	32	21.5	PT1/8"	213 283 351

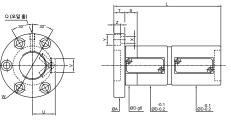

						-1			WA.		<u> </u>	10-0.2					단위	P : mm
스크	류크기		볼	기본 정격 히	중(kgf)	너	트	풀	플랜기	Ŋ	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	_글 열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	W	S	х	Y	Z	U	٧	Q	kgf/ μm
12	10	2.381	2.5 × 1	420	720	25	50	48	10	36	10	4.5	8	4.4	14	12	M6 × 1P	20
	10	3.969	2.5×1 3.5×1	1210 1580	2380 3230	38	63 73	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	34 45
20	16	3.969	1.5×1 2.5×1	830 1210	1530 2380	38	63 79	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	24 34
	20	3.969	1.5 × 1	830	1530	38	70	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	24
	16	3.969	1.5×1 2.5×1	920 1340	1930 3000	42	68 84	68	15	55	15	6.5	11	6.6	26	14	M6 × 1P	28 40
25	20	4.762	1.5×1 2.5×1 3.5×1	1170 1710 2220	2300 3580 4860	44	74 94 114	72	15	59	15	6.6	11	6.5	28	14	M6 × 1P	29 42 55
	16	3.969	1.5×1 2.5×1 3.5×1 5×1	1010 1470 1910 2340	2480 3860 5240 6610	49	67 83 99 115	78	15	63	15	6.6	11	6.5	30	16	M8 × 1P	33 48 63 77
32	16	6.35	2.5×1 3.5×1 5×1	2830 3680 4490	8200 11120 14050	57	92 108 124	98	18	77	20	11	17.5	11	34	22	M8 × 1P	54 69 85
32	20	3.969	1.5×1 2.5×1 3.5×1 5×1	1010 1470 1910 2350	2480 3860 5240 6610	49	74 94 114 134	78	15	63	15	6.6	11	6.5	30	16	M8 × 1P	33 48 63 77
	20	6.35	2.5×1 3.5×1 5×1	2830 3680 4490	8200 11120 14050	57	104 124 144	98	18	77	20	11	17.5	11	34	22	M8 × 1P	54 69 85

FSVE

제품 사양 하이리드 볼스크류

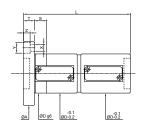


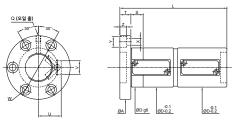
						ļ				[DD g	2 [80-0	_					단위	2 : mm
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트	플	랜지	1	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경		동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	W	S	х	Υ	Z	U	٧	Q	kgf/ μm
	10	6.35	3.5×1 5×1	3890 4750	9390 11860	60	84 94	100	18	80	20	11	17.5	11	36	22	M8 × 1P	76 93
	12	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	60	85 97 109	100	18	80	20	11	17.5	11	36	22	M8 × 1P	58 76 93
36	16	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	60	91 107 123	100	18	80	20	11	17.5	11	36	22	M8 ×	58 76 93
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2050 2990 3890 4750	4450 6920 9390 11860	60	91 111 131 151	100	18	80	20	11	17.5	11	36	22	M8 × 1P	41 58 76 93
	10	6.35	3.5 × 1 5 × 1	4130 5050	10560 13340	64	86 96	104	18	84	20	11	17.5	11	38	22	PT1/8"	82 101
	12	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	64	86 98 110	104	18	84	20	11	17.5	11	38	22	PT1/8"	63 82 101
40	16	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	64	93 109 125	104	18	84	20	11	17.5	11	38	22	PT1/8"	63 82 101
40	16	7.144	2.5×1 3.5×1 5×1	3740 4870 5950	8790 11930 15070	64	92 108 124	104	18	84	15	11	17.5	11	39	20	PT1/8"	65 84 103
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2180 3180 4130 5050	5000 7780 10560 13340	64	84 104 124 144	104	18	84	20	11	17.5	11	38	22	PT1/8"	43 63 82 101
	40	6.35	1.5 × 1	2180	5000	64	130	104	18	84	20	11	17.5	11	38	20	PT1/8"	43



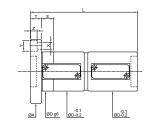
																	단위	2 : mm
스=	1류크기		볼	기본 정격 히	중(kgf)	너	트	플	랜지		피트		볼트		복귀	튜브	오일홀	강성
O.D	. 리드	볼 직경	_글 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
	10	6.35	3.5×1 5×1	4560 5580	13230 16710	73	85 95	118	18	96	20	11	17.5	11	43	22	PT1/8"	97 119
			2.5 × 1	3510	9750		82											74
	12	6.35	3.5×1	4560	13230	73	94	118	18	96	20	11	17.5	11	43	22	PT1/8"	97
			5 × 1	5580	16710		106											119
			2.5 × 1	4080	11260		93											75
	12	7.144	3.5×1	5300	15280	75	105	122	20	98	15	14	20	13	44	24	PT1/8"	99
			5 × 1	6480	19300		117											121
			2.5×1	3510	9750		94											74
	16	6.35	3.5×1	4560	13230	73	110	118	18	96	20	11	17.5	11	43	22	PT1/8"	97
50			5 × 1	5580	16710		126											119
50			2.5×1	4080	11260		100											75
	16	7.144	3.5×1	5300	15280	75	116	122	20	98	15	14	20	13	44	22	PT1/8"	99
			5 × 1	6480	19300		132											121
			1.5×1	2790	7240		98											52
	20	7.144	2.5×1	4080	11260	75	118	122	20	98	15	14	20	13	44	20	PT1/8"	75
	20	,	3.5×1	5300	15280	,,	138		20	,,	13	• •	20		• •	20	1 1 1/0	99
			5 × 1	6480	19300		158											121
			2.5×1	4750	12090		119											78
	20	7.938	3.5×1	6180	16400	76	139	123	25	99	20	14	20	13	46	25	PT1/8"	101
			5 × 1	7550	20720		159											124
	50	7.938	1.5×1	3250	7770	76	157	123	25	99	20	14	20	13	46	25	PT1/8"	53

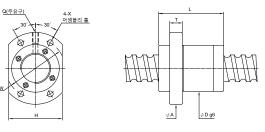
FSVE


스크	류크기		볼	기본 정격 히	·중(kgf)	너	트	플	플랜기	ij.	피트		볼트	Ē	복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	ョ 열의 수 열×권	동정격 (1×106 REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
	10	6.35	3.5×1 5×1	5030 6150	17020 21500	86	86 96	133	22	108	20	14	20	13	49	24	PT1/8"	115 141
	12	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	86	84 96 108	133	22	108	20	14	20	13	49	24	PT1/8"	87 115 141
	12	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	87	90 102 114	134	22	110	20	14	20	13	50	25	PT1/8"	89 117 145
	16	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 19620 24780	87	97 113 129	134	22	110	20	14	20	13	50	25	PT1/8"	89 117 145
63	16	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	89	112 128 144	148	28	118	25	18	26	17.5	52	25	PT1/8"	91 120 147
	20	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	86	104 124 144	133	22	108	20	14	20	13	49	24	PT1/8"	87 115 141
	20	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	89	120 140 160	148	28	118	25	18	26	17.5	52	25	PT1/8"	91 120 147
	20	9.525	2.5×1 3.5×1 5×1	8870 11530 14090	25870 35110 44350	93	120 140 160	152	28	122	25	18	26	17.5	54	28	PT1/8"	105 136 167
	10	6.35	3.5×1 5×1	5630 6880	21660 27360	103	90 100	150	22	126	20	14	20	13	58	25	PT1/8"	133 164
	12	7.938	3.5×1 5×1	7670 9380	27030 34140	123	101 113	170	22	146	20	14	20	13	66	28	PT1/8"	143 177
80	16	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	126	108 124 140	185	28	155	30	18	26	17.5	70	28	PT1/8"	124 162 201
	20	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	126	120 140 160	185	28	155	30	18	26	17.5	70	28	PT1/8"	124 162 201
100	16	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	146	115 131 147	217	32	181	30	22	32	21.5	82	35	PT1/8"	139 182 226
-100	20	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	146	128 148 168	217	32	181	30	22	32	21.5	82	35	PT1/8"	139 182 226


				<u> </u>	_		<u> 9</u>	A] [A	DD Go	[ØD-0		<u>[Di</u>	0-0.2				단위	P : mm
스크	류크기		볼	기본 정격 하	중(kgf)	너	트	픝	플랜기	4	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	章 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Υ	Z	U	٧	Q	kgf/ μm
12	10	2.381	2.5 × 1	420	720	25	102	48	10	36	10	4.5	8	4.4	14	12	M6 × 1P	30
	10	3.969	2.5×1 3.5×1	1210 1580	2380 3230	38	113 133	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	51 68
20	16	3.969	1.5 × 1 2.5 × 1	830 1210	1530 2380	38	128 160	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	35 51
	20	3.969	1.5 × 1	830	1530	38	130	62	13	50	10	5.5	9.5	5.5	23	15	M6 × 1P	35
	16	3.969	1.5×1 2.5×1	920 1340	1930 3000	42	126 158	68	15	55	15	6.6	11	6.5	26	14	M6 × 1P	41 61
25	20	4.762	1.5×1 2.5×1 3.5×1	1170 1710 2220	2300 3580 4860	44	154 194 234	72	15	59	15	6.6	11	6.5	28	14	M6 × 1P	43 63 83
	16	3.969	1.5×1 2.5×1 3.5×1 5×1	1010 1470 1910 2340	2480 3860 5240 6610	49	132 164 196 228	78	15	63	15	6.6	11	6.5	30	16	M8 × 1P	49 73 96 120
32	16	6.35	2.5×1 3.5×1 5×1	2830 3680 4490	8200 11120 14050	57	173 205 237	98	18	77	20	11	17.5	11	34	22	M8 × 1P	80 105 131
	20	3.969	1.5×1 2.5×1 3.5×1 5×1	1010 1470 1910 2350	2480 3860 5240 6610	49	134 174 214 254	78	15	63	15	6.6	11	6.5	30	16	M8 × 1P	49 73 96 120
	20	6.35	2.5×1 3.5×1 5×1	2830 3680 4490	8200 11120 14050	57	204 244 284	98	18	77	20	11	17.5	11	34	22	M8 × 1P	80 105 131

FDVE

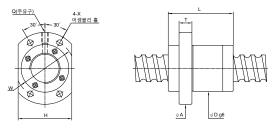

																	단위	2 : mm
스크	류크기		볼	기본 정격 하	·중(kgf)	너	트	플	랜지	:	피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Y	Z	U	V	Q	kgf/ μm
	10	6.35	3.5 × 1 5 × 1	3890 4750	9390 11860	60	155 175	100	18	80	20	11	17.5	11	36	22	M8 × 1P	115 143
	12	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	60	152 176 200	100	18	80	20	11	17.5	11	36	22	M8 × 1P	88 115 143
36	16	6.35	2.5×1 3.5×1 5×1	2990 3890 4750	6920 9390 11860	60	173 205 237	100	18	80	20	11	17.5	11	36	22	M8 × 1P	88 115 143
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2050 2990 3890 4750	4450 6920 9390 11860	60	164 204 244 284	100	18	80	20	11	17.5	11	36	22	M8 × 1P	59 88 115 143
	10	6.35	3.5×1 5×1	4130 5050	10560 13340	64	155 175	104	18	84	20	11	17.5	11	38	22	PT1/8"	125 155
	12	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	64	141 165 189	104	18	84	20	11	17.5	11	38	22	PT1/8"	95 125 155
	16	6.35	2.5×1 3.5×1 5×1	3180 4130 5050	7780 10560 13340	64	173 205 237	104	18	84	20	11	17.5	11	38	22	PT1/8"	95 125 155
40	16	7.144	2.5×1 3.5×1 5×1	3740 4870 5950	8790 11930 15070	64	173 205 237	104	18	84	15	11	17.5	11	39	20	PT1/8"	98 128 159
	20	6.35	1.5×1 2.5×1 3.5×1 5×1	2180 3180 4130 5050	5000 7780 10560 13340	64	143 183 223 263	104	18	84	20	11	17.5	11	38	22	PT1/8"	64 95 125 155
	40	6.35	1.5 × 1	2180	5000	64	242	104	18	84	20	11	17.5	11	38	20	PT1/8"	64


스크-	류크기		볼	기본 정격 하	·중(kgf)	너	트	플	랜지		피트		볼트		복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	ョ 열의 수 열×권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	т	w	S	х	Y	z	U	٧	Q	kgf/ μm
	10	6.35	3.5×1 5×1	4560 5580	13230 16710	73	155 175	118	18	96	20	11	17.5	11	43	22	PT1/8"	149 185
	12	6.35	2.5×1 3.5×1 5×1	3510 4560 5580	9750 13230 16710	73	152 176 200	118	18	96	20	11	17.5	11	43	22	PT1/8"	112 149 185
	12	7.144	2.5×1 3.5×1 5×1	4080 5300 6480	11260 15280 19300	75	161 185 209	122	20	98	15	14	20	13	44	24	PT1/8"	114 151 187
50	16	6.35	2.5×1 3.5×1 5×1	3510 4560 5580	9750 13230 16710	73	174 206 238	118	18	96	20	11	17.5	11	43	22	PT1/8"	112 149 185
50	16	7.144	2.5×1 3.5×1 5×1	4080 5300 6480	11260 15280 19300	75	173 205 237	122	20	98	15	14	20	13	44	22	PT1/8"	114 151 187
	20	7.144	1.5×1 2.5×1 3.5×1 5×1	2790 4080 5300 6480	7240 11260 15280 19300	75	164 204 244 284	122	20	98	15	14	20	13	44	20	PT1/8"	77 114 151 187
	20	7.938	2.5×1 3.5×1 5×1	4750 6180 7550	12090 16400 20720	76	219 259 299	123	25	99	20	14	20	13	46	25	PT1/8"	117 154 191
	50	7.938	1.5×1	3250	7770	76	305	123	25	99	20	14	20	13	46	25	PT1/8"	79

FDVE

제품 사양 엔드 캡 시리즈

																	단위	2 : mm
스크	류크기		볼 열의	기본 정격 하	중(kgf)	너	트	를	들랜기	۲J	피트		볼트	Ē.	복귀	튜브	오일홀	강성
O.D.	리드	볼 직경	수 권×나 사수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	х	Y	Z	U	٧	Q	kgf/ μm
	10	6.35	3.5×1 5×1	5030 6150	17020 21500	86	155 175	133	22	108	20	14	20	13	49	24	PT1/8"	178 220
	12	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	86	153 177 201	133	22	108	20	14	20	13	49	24	PT1/8"	134 178 220
	12	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 17210 24780	87	158 182 206	134	22	110	20	14	20	13	50	25	PT1/8"	136 180 224
	16	7.144	2.5×1 3.5×1 5×1	4540 5900 7210	14460 17210 24780	87	177 209 241	134	22	110	20	14	20	13	50	25	PT1/8"	139 184 228
63	16	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	89	271	148	28	118	25	18	26	17.5	52	25	PT1/8"	134 178 220
	20	6.35	2.5×1 3.5×1 5×1	3870 5030 6150	12540 17020 21500	86	205245285	133	22	108	20	14	20	13	49	24	PT1/8"	134 178 220
	20	7.938	2.5×1 3.5×1 5×1	5260 6840 8360	15430 20940 26450	89	221261301	148	28	118	25	18	26	17.5	52	25	PT1/8"	139 184 228
	20	9.525	2.5×1 3.5×1 5×1	8870 11530 14090	25870 35110 44350	93	219 259 299	152	28	122	25	18	26	17.5	54	28	PT1/8"	158 208 258
	10	6.35	3.5×1 5×1	5630 6880	21660 27360	103	159 179	150	22	126	20	14	20	13	58	25	PT1/8"	207 256
	12	7.938	3.5×1 5×1	7670 9380	27030 34140	123	184 208	170	22	146	20	14	20	13	66	28	PT1/8"	222 275
80	16	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	126	188 220 252	185	28	155	30	18	26	17.5	70	28	PT1/8"	189 251 311
	20	9.525	2.5×1 3.5×1 5×1	9900 12990 15880	33200 45050 56910	126	220 260 300	185	28	155	30	18	26	17.5	70	28	PT1/8"	189 251 311
100	16	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	146	275	217	32	181	30	22	32	21.5	82	35	PT1/8"	213 283 351
-100	20	9.525	2.5×1 3.5×1 5×1	11320 14720 17990	41820 56750 71690	146	228268308	217	32	181	30	22	32	21.5	82	35	PT1/8"	213283351


다의	m

													_	
스크	류크기		볼	기본 정격 하	·중(kgf)						볼직경	!		
		볼 직경	열의 수 권×나사	동정격	정정격	너	트		플립	밴지		어셈블리 홀	오일 홀	강성
O.D.	리드		수	(1×10 ⁶ REV.) Ca	Со	Dg6	L	Α	Т	Н	W	х	Q	kgf/μm
15	10	3.175	2.8×2	1410	2800	34	44	57	10	40	45	5.5	M6×1P	34
16	16	3.175	1.8×2	700	1400	32	38	53	10	38	42	4.5	M6×1P	18
20	20	3.175	1.8×2	1100	2500	39	52	62	10	46	50	5.5	M6×1P	29
25	25	3.969	1.8×2	1650	3900	47	62	74	12	60	56	6.6	M6×1P	35
23	23	3.909	1.8×4	2830	7800	47	02	74	12	00	30	0.0	MOXIF	69
32	32	4.762	1.8×2	2360	5940	58	78	92	15	68	74	9	M6×1P	44
32	32	4.702	1.8×4	4280	11800	50	70	92	13	00	/-	,	MOATI	87
36	24	7.144	2.8×2	6450	15220	75	94	115	18	86	94	11	M6×1P	77
40	40	6.35	1.8×2	3860	9900	73	95	114	17	84	93	11	M6×1P	55
70	40	0.55	1.8×4	7000	19880	75	93	114	17	04	93	11	MOXII	108
50	50	7.938	1.8×2	5800	15800	90	122	135	20	104	112	14	M6×1P	68
50	50	7.550	1.8×4	10520	31600	70	122	133	20	104	112	17	WIOATT	135

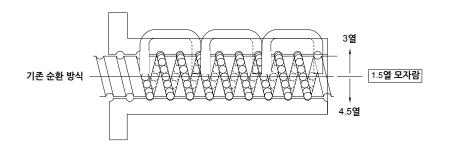
제품

제품 사양 | 초고리드-엔드 캡 시리즈

초고리드-엔드 캡 시리즈

													I	단위: <i>mm</i>
스크류	사이즈		순환수	기본정격하	卡중(kgf)						너트	사이즈		
0174	-1-	볼 직경	권 ×	동격하중	정격하중	너	트		플린	밴지		나사홀	오일홀	강성
외경	리드		나사수	(1×10 ⁶ REV.) Ca	Со	Dg6	L	Α	Т	Н	W	Х	Q	kgf/μm
15	30	3.175	0.8×2	480	800	32	34	53	10	33	43	5.5	M6 × 1P	12
	30	3.173	1.8 × 1	530	900	32	64	23	10	33	43	3.3	MO X IF	13
20	40	3.175	0.8×2	550	1110	38	41	58	10	40	48	5.5	M6 × 1P	14
20	40	3.173	1.8×1	610	1250	50	81	50	10	+0	40	5.5	MO X II	16
25	50	3.969	0.8×2	820	1730	46	50	70	12	48	58	6.6	M6 × 1P	17
25	30	3.909	1.8 × 1	910	1950	40	100	70	12	40	50	0.0	MO X IF	19

특징


정밀 연삭 볼스크류

고하중 시리즈

FSVH은 볼과 나사산 홈의 접촉점, 볼 직경, 순환 시스템 개선에 초점을 맞춘 새로운 타입의 제 품입니다. 동정격하중이 기존 타입의 제품인 FSVC보다 2배나 높습니다.

긴 수명

새롭게 개발된 순환 시스템의 구조가 모든 하중 볼에 동일한 하중을 싣도록 설계되어 있으며, 볼 스크류의 수명을 연장합니다. 기존 타입의 순환 시스템 FSVC의 경우, 순환튜브가 수직으 로 전진각을 구성하는 볼 너트의 홀에 꽂혀 있습니다. 볼이 순환튜브로 이동하지만, 볼이 튜 브 끝 부분을 치고 난 후에 순환튜브로 이동하게 됩니다. 새로운 순환 시스템 FSVH의 경우, 볼 이 진입각과 방향이 동일한 접선 때문에 순환튜브로 부드럽게 이동합니다. 이로 인해 순환 시 스템 구조의 수명이 연장됩니다.

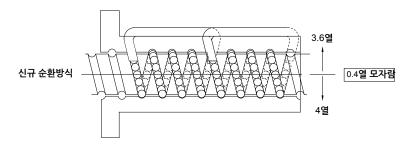
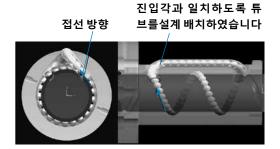
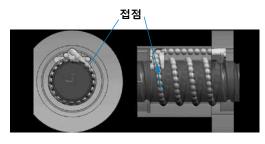


그림4. 고하중볼스크류의 신.구 순환 열수 차이 비교


BALLSCREWS

탁월한 DN값


새로 개발된 순환 시스템을 사용하는 경우, 볼스크류가 DN값이 높은 고속 회전이 가능합니다.

저소음

접선을 따라 작용하는 순환 시스템 구조를 사용하는 경우, 볼이 순환튜브로 들어가는 동안 발생하는 소음을 제거할 수 있습니다.

FSVH 순환구조 (NEW)

FSDH 순환 구조 (NEW)

그림5. FSVH. FSDH 순환 구고

FSVC 순환 구조

그림6. 구 형식 FSVC 순환 구조

다양한 제품사양 조합

PMI는현재 외경 Ø40 ~ Ø120 & 리드 10 ~ 60 의 표준규격까지 제작이 가능합니다.

(특수한 규격을 요구하실 경우 PMI 기술부로 연락주시기 바랍니다.)

고하중 볼스크류 조립방법

스크류 축와 너트 받는 하중이 일치하기 위해서는 **7**그림상의 조립방법을 참고하여 주시기 바랍니다. 축,너트 및 볼 마모,하중 불균형으로 인한 진동을 방지하여 볼스크류 사용수명을 보장할 수 있습니다.

정밀등급 및 축방향 간격

기타 정도등급 있거나 혹은 축방향 간격이 0보다 작은 현상을 발견하면 PMI에 연락주시기 바랍니다.

단위:*mm*

축방향 간격	S	N
정밀등급	0.010 이하	0.030 이하
C6	C6S	C6N

용도

플라스틱 사출기 / 프레스 및 단조기 / 반도체 장비 / 일반 기계

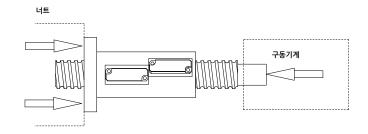


그림7. 고하중볼스크류 조립방법

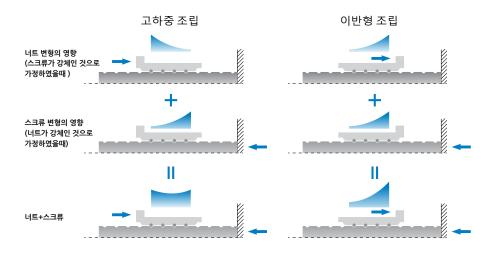
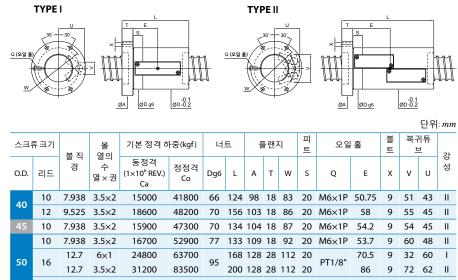
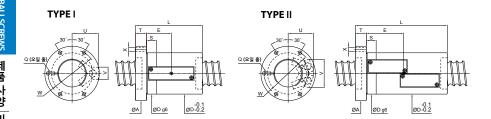
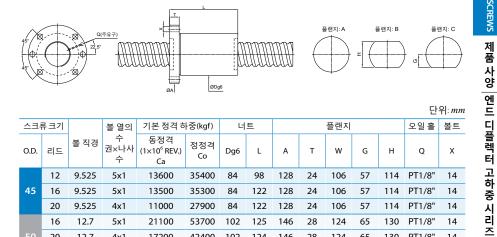



그림8. 하중분포도

20	12.7	3.5×2	31200	84800	95	235	128	28	112	20	PT1/8"	97	9	72	62	Ш
10	7.938	3.5×2	17500	58500	80	153	114	28	97	20	PT1/8"	62.1	9	61	49	Ш
16	12.7	6×1	25800	71800	100	168	133	28	115	20	PT1/8"	69.5	9	32	63	1
16	12.7	3.5×2	32600	94000	100	200	133	28	115	20	P11/6	84.5	9	77	64	Ш
		6×1	27800	81700	105	168	138	28	122	25		65.25	9	32	66	-1
16	12.7	3.5×2	35000	107000	105	202	138	28	122	25	PT1/8"	82.25	9	80	67	Ш
		6×2	50300	164000	105	266	138	28	122	25		114.25	9	80	67	Ш
20	15.875	2.5×2	35900	99300	117	210	157	32	137	25	PT1/8"	96	11	88	74	Ш
20	13.6/3	3.5×2	46600	134700	117	246	157	32	137	25	P11/6	105.5	11	88	74	Ш
25	15.875	2.5×2	35900	99300	117	235	157	32	137	25	PT1/8"	91	11	88	75	Ш
		6×1	30900	104400	120	172	158	32	139	25		66	9	36	73	1
16	12.7	3.5×2	39000	136700	120	205	158	32	139	25	PT1/8"	84	9	89	74	Ш
		6×2	56000	208700	120	275	158	32	139	25		122	9	89	74	Ш
		2.5×2	40100	127000	130	210	168	32	150	25		87.5	11	90	83	Ш
20	15.875	3.5×2	52100	172400	130	250	168	32	150	25	PT1/8"	107.5	11	90	83	Ш
		6×2	75000	263200	130	330	168	32	150	30		147.5	11	90	83	Ш
25	19.05	3.5×2	67700	206100	145	305	188	40	165	25	PT1/8"	119	11	108	94	Ш
25	19.03	6×2	97200	314600	145	402	188	40	165	30	F11/6	169	11	108	94	Ш

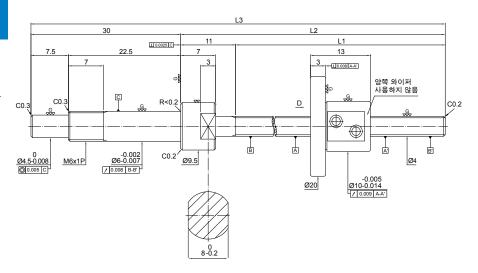

고하중 시리즈

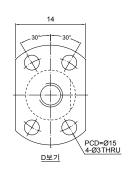
FSVH


BALLSCREWS

FSDH

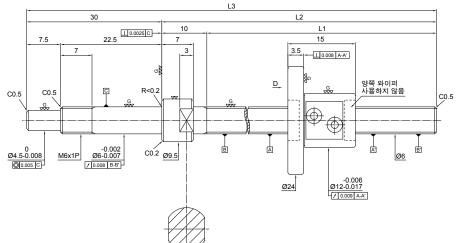
정밀 연삭 볼스크류 플렉터 고하중 시리즈

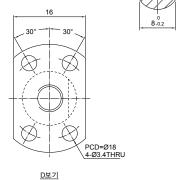



																단위	: <i>mm</i>
스크	류크기		볼	_		하중(kgf) 너트		플랜지		피 트	' 오익으		볼 트	목귀튜브		강	
O.D.	리드	볼 직경	열의 수 열 × 권	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	Α	Т	w	S	Q	E	Х	٧	U	성
			6×1	34200	133200	145	172	185	32	165	25		63.5	11	38	85	1
	16	12.7	3.5×2	43200	174500	145	205	185	32	165	25	PT1/8"	79.5	11	98	85	Ш
			6×2	62000	266300	145	275	185	32	165	25		117.5	11	98	85	Ш
100			2.5×2	44800	160900	150	205	194	32	172	30		82	11	107	92	П
100	20	15.875	3.5×2	58300	218400	150	245	194	32	172	30	PT1/8"	102	11	107	92	П
			6×2	83800	333300	150	330	194	32	172	30		147	11	107	92	П
	25	19.05	3.5×2	74900	260200	165	305	218	40	190	30	PT1/8"	122	11	111	102	П
	25	19.05	6×2	107700	397100	165	410	218	40	190	30	P11/6	177	11	111	102	Ш
	16	12.7	6×1	36840	157360	173	205	213	40	193	30	PT1/8"	84	11	38	93	1
	10	12.7	3.5×2	46480	206200	173	230	213	40	193	30	P11/6	101	11	108	94	П
120	20	15.875	6×1	46000	160800	173	222	213	40	193	30	DT1 /0"	95	11	54	100	ı
120	20	15.8/5	3.5×2	58100	210700	173	260	213	40	193	30	PT1/8"	116	11	121	104	П
	25	10.15	6×1	59200	194500	173	261	213	40	193	30	PT1/8"	109.5	11	50	106	1
	25	19.15	3.5×2	82100	314300	173	314	213	40	193	30	P11/8"	135.5	11	129	109	П

													단-	위: <i>mm</i>
스크루	류크기		볼 열의	기본 정격 혀	기본 정격 하중(kgf)			너트 플랜지					오일홀	볼트
O.D.	리드	볼 직경	수 권x나사 수	동정격 (1×10 ⁶ REV.) Ca	정정격 Co	Dg6	L	А	Т	w	G	н	Q	х
	12	9.525	5x1	13600	35400	84	98	128	24	106	57	114	PT1/8"	14
45	16	9.525	5x1	13500	35300	84	122	128	24	106	57	114	PT1/8"	14
	20	9.525	4x1	11000	27900	84	122	128	24	106	57	114	PT1/8"	14
	16	12.7	5x1	21100	53700	102	125	146	28	124	65	130	PT1/8"	14
50	20	12.7	4x1	17200	42400	102	124	146	28	124	65	130	PT1/8"	14
	40	12.7	3x2	23400	61200	102	163	146	28	124	65	130	PT1/8"	14
63	32	15.875	4x1	25500	66000	126	176	182	32	154	81	162	PT1/8"	18
03	40	15.875	3x2	35300	96600	126	169	182	32	154	81	162	PT1/8"	18
80	50	19.05	4x2	66600	204000	155	255	224	40	190	100	200	PT1/8"	22
100	60	19.05	4x2	73400	251500	175	295	244	40	210	100	200	PT1/8"	22

제품 사양 미니어처 시리즈

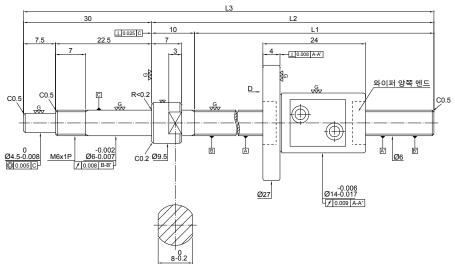


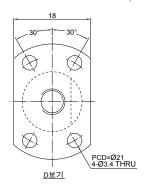


볼스크류	볼스크류 사양										
제품규격	예압품	미세간격									
나사산 수/나사산 방향	1/오	른쪽									
BCD	4	.1									
리드		I									
볼 직경.	0.8										
유효 회전수 (서킷×로우)	2.5	× 1									
진입각	4.44										
정정격하중 Ca (kgf)	4	9									
동정격하중 Co (kgf)	7	0									
축운동	0	0.005이하									
전하중 토크 (kgf-cm)	0.01~0.1	0.03이하									

단위:*mm*

- =	나사 스핀들 (샤프트) 길이				리드 정도				
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출		
FSM0401-C3-1R-0085	44	55	85	3	0	0.012	0.008		
FSM0401-C3-1R-0105	64	75	105	3	0	0.012	0.008		
FSM0401-C3-1R-0135	94	105	135	3	0	0.012	0.008		

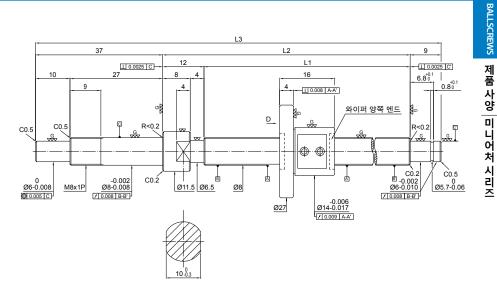


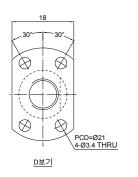


볼스크류 사양										
제품규격	예압품	미세간격								
나사산 수/나사산 방향	1/오	른쪽								
BCD	6	.1								
리드	1	I								
볼 직경.	0.8									
유효 회전수 (서킷×로우)	2.5 × 1									
진입각	2.99									
정정격하중 Ca (kgf)	5	8								
동정격하중 Co (kgf)	10	00								
축운동	0	0.005이하								
전하중 토크 (kgf-cm)	0.01~0.15	0.03이하								

	나사 스핀들 (샤프트) 길이				리드 정도				
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출		
FSM0601-C3-1R-0105	65	75	105	3	0	0.012	0.008		
FSM0601-C3-1R-0135	95	105	135	3	0	0.012	0.008		
FSM0601-C3-1R-0165	125	135	165	3	0	0.012	0.008		

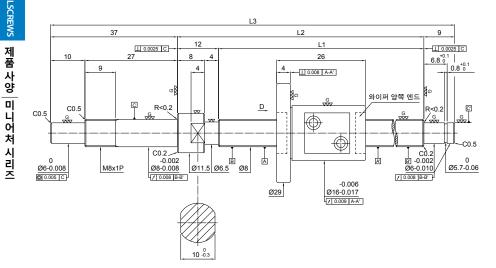
FSMC 미니추어 볼스크류 축경 Ø6 리드 02

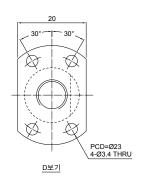




볼스크류 사양											
제품규격	예압품	미세간격									
나사산 수/나사산 방향	1/오	른쪽									
BCD	6	.3									
리드	:	2									
볼 직경.	1.588										
유효 회전수 (서킷×로우)	2.5 × 1										
진입각	5.77										
정정격하중 Ca (kgf)	10	60									
동정격하중 Co (kgf)	2	10									
축운동	0	0.005이하									
전하중 토크 (kgf-cm)	0.01~0.2	0.05이하									

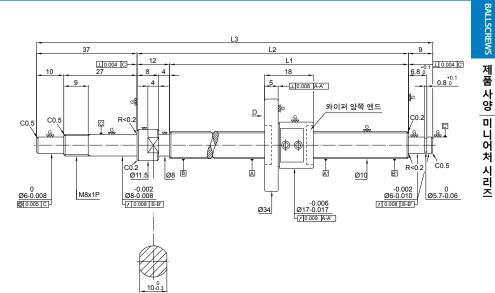
단위:*mm*

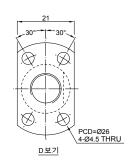

	나사 스핀들 (샤프트) 길이				리드 정도					
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출			
FSM0602-C3-1R-0105	65	75	105	3	0	0.012	0.008			
FSM0602-C3-1R-0135	95	105	135	3	0	0.012	0.008			
FSM0602-C3-1R-0165	125	135	165	3	0	0.012	0.008			



볼스크류 사양										
품	미세간격									
1/오	른쪽									
8	.1									
	l									
0	.8									
2.5 × 1										
2.25										
6	6									
14	40									
)	0.005이하									
~0.2	0.05이하									
	1/오 8 0 2.5 2 6									

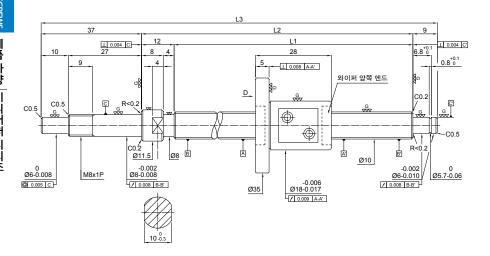
	나사 스핀들 (샤프트) 길이				리드 정도					
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출			
FSM0801-C3-1R-0138	80	92	138	3	0	0.012	0.008			
FSM0801-C3-1R-0168	110	122	168	3	0	0.012	0.008			
FSM0801-C3-1R-0198	140	152	198	3	0	0.012	0.008			
FSM0801-C3-1R-0248	190	202	248	3	0	0.012	0.008			

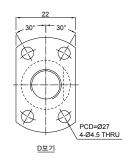



FSMC 미니추어 볼스크류 축경 Ø8 리드 02

볼스크류 사양						
제품규격	예압품	미세간격				
나사산 수/나사산 방향	1/오른쪽					
BCD	8	.3				
리드	2					
볼 직경.	1.588					
유효 회전수 (서킷×로우)	2.5 × 1					
진입각	4.39					
정정격하중 Ca (kgf)	19	90				
동정격하중 Co (kgf)	29	90				
축운동	0	0.005이하				
전하중 토크 (kgf-cm)	0.01~0.2	0.05이하				

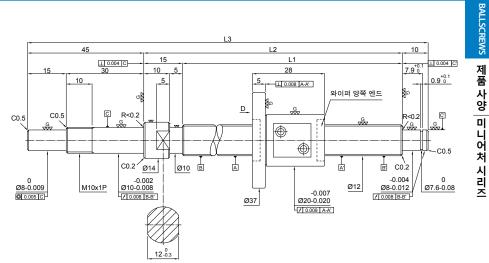
단위: mm

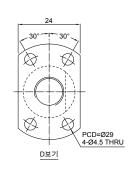

	나사 스	스핀들 (샤프트) 길이 리드 정도					정도
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출
FSM0802-C3-1R-0138	80	92	138	3	0	0.012	0.008
FSM0802-C3-1R-0168	110	122	168	3	0	0.012	0.008
FSM0802-C3-1R-0198	140	152	198	3	0	0.012	0.008
FSM0802-C3-1R-0248	190	202	248	3	0	0.012	0.008



볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/오	른쪽			
BCD	10	0.1			
리드		1			
볼 직경.	0.8				
유효 회전수 (서킷×로우)	2.5 × 1				
진입각	1.8				
정정격하중 Ca (kgf)	7	3			
동정격하중 Co (kgf)	180				
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.01~0.3	0.05이하			

	나사 스핀들 (샤프트) 길이				리드 정도			
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출	
FSM1001-C3-1R-0168	110	122	168	3	0	0.012	0.008	
FSM1001-C3-1R-0218	160	172	218	3	0	0.012	0.008	
FSM1001-C3-1R-0268	210	222	268	3	0	0.012	0.008	
FSM1001-C3-1R-0318	260	272	318	3	0	0.012	0.008	
FSM1001-C3-1R-0368	310	322	368	3	0	0.013	0.008	

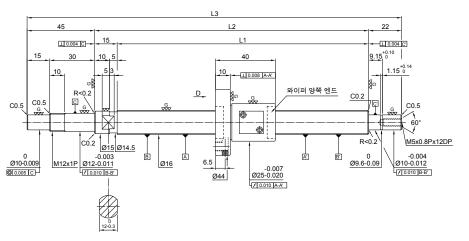


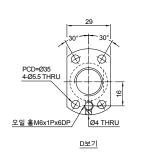

FSMC 미니추어 볼스크류 축경 Ø10 리드 02

볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/오	른쪽			
BCD	10).3			
리드	2				
볼 직경.	1.588				
유효 회전수 (서킷×로우)	2.5 × 1				
진입각	3.54				
정정격하중 Ca (kgf)	220				
동정격하중 Co (kgf)	37	70			
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.01~0.3	0.05이하			

단위:*mm*

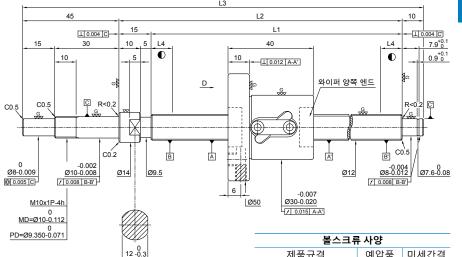
	나사 스핀들 (샤프트) 길이				리드 장	성도	
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출
FSM1002-C3-1R-0168	110	122	168	3	0	0.012	0.008
FSM1002-C3-1R-0218	160	172	218	3	0	0.012	0.008
FSM1002-C3-1R-0268	210	222	268	3	0	0.012	0.008
FSM1002-C3-1R-0318	260	272	318	3	0	0.012	0.008
FSM1002-C3-1R-0368	310	322	368	3	0	0.012	0.008


볼스크류 사양						
제품규격	예압품	미세간격				
나사산 수/나사산 방향	1/오른쪽					
BCD	12	2.3				
리드	2					
볼 직경.	1.588					
유효 회전수 (서킷×로우)	2.5 × 1					
진입각	2.96					
정정격하중 Ca (kgf)	240					
동정격하중 Co (kgf)	4:	50				
축운동	0	0.005이하				
전하중 토크 (kgf-cm)	0.04~0.4	0.1이하				


		나사 스핀들 (샤프트) 길이			리드 정도		
모델 번호	L1	L2	L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
FSM1202-C3-1R-0180	110	125	180	3	0	0.012	0.008
FSM1202-C3-1R-0230	160	175	230	3	0	0.012	0.008
FSM1202-C3-1R-0280	210	225	280	3	0	0.012	0.008
FSM1202-C3-1R-0330	260	275	330	3	0	0.012	0.008
FSM1202-C3-1R-0380	310	325	380	3	0	0.012	0.008

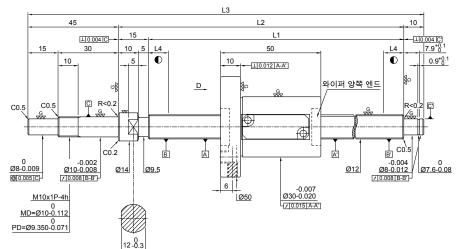
FSMC 미니추어 볼스크류 축경 Ø16 리드 02

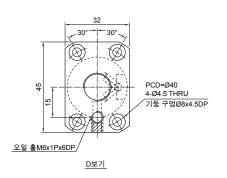
정밀 연삭 볼스크류


표준형볼스크류시리즈

볼스크류 사양					
 제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/오른쪽				
BCD	16	5.3			
리드	2				
볼 직경.	1.588				
유효 회전수 (서킷×로우)	3.5 × 1				
진입각	2.	24			
정정격하중 Ca (kgf)	360				
동정격하중 Co (kgf)	8:	50			
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.05~0.5	0.15이하			

	나사 스핀들 (샤프트) 길이				리드 정도		
모델 번호	L1	전도 등급 L2 L3	정도 등급	지정된 왕 복운동 (T)	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출	
FSM1602-C3-1R-0221	139	154	221	3	0	0.012	0.008
FSM1602-C3-1R-0271	189	204	271	3	0	0.012	0.008
FSM1602-C3-1R-0321	239	254	321	3	0	0.012	0.008
FSM1602-C3-1R-0371	289	304	371	3	0	0.012	0.008
FSM1602-C3-1R-0471	389	404	471	3	0	0.013	0.008

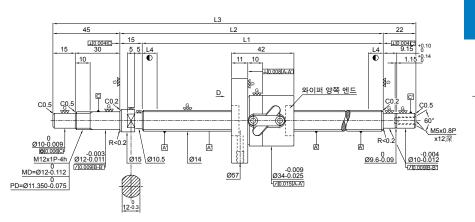

32	나사산 수/
30° - 30°	В
	2
	볼
	유효 회전수
PCD=Ø40	진
4-Ø4.5 THRU	정정격ㅎ
일 기둥 구멍Ø8x4.5DP	동정격하
	축
	전하중 토
오일 홀M6x1Px6DP	
<u>D보기</u>	

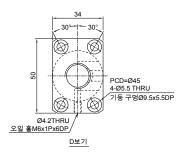

르ㅡㅗㅠ ^ ㅇ							
제품규격	예압품 미세간격						
나사산 수/나사산 방향	1/ 오른쪽						
BCD	12	2.4					
리드		5					
볼 직경.	2.381						
유효 회전수 (서킷×로우)	2.5 × 1						
진입각	7.31						
정정격하중 Ca (kgf)	3	80					
동정격하중 Co (kgf)	640						
축운동	0	0.005 이하					
전하중 토크 (kgf-cm)	0.01~0.45 0.1 이호						

난위	:	mi
----	---	----

	나시	사스핀들 (샤프트) [길이	정도	리드 정도 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출	
1R12-05B1-1FSWC-110-180-0.008	110	125	180	10	3	0.012	0.008	
1R12-05B1-1FSWC-160-230-0.008	160	175	230	10	3	0.012	0.008	
1R12-05B1-1FSWC-210-280-0.008	210	225	280	10	3	0.012	0.008	
1R12-05B1-1FSWC-260-330-0.008	260	275	330	10	3	0.012	0.008	
1R12-05B1-1FSWC-310-380-0.008	310	325	380	10	3	0.012	0.008	
1R12-05B1-1FSWC-410-480-0.008	410	425	480	15	3	0.013	0.008	
1R12-05B1-1FSWC-510-580-0.008	510	525	580	15	3	0.015	0.008	

제품

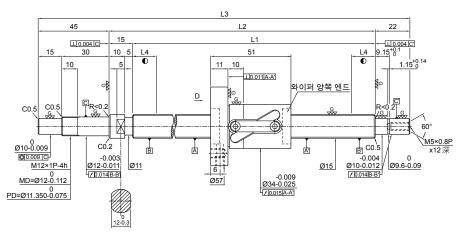


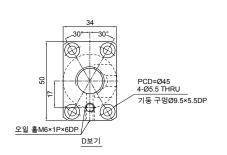


볼스크류 사양							
제품규격	예압품 미세간격						
나사산 수/나사산 방향	1/ 오른쪽						
BCD	12.4						
리드	10						
볼 직경.	2.381						
유효 회전수 (서킷×로우)	2.5 × 1						
진입각	14.4						
정정격하중 Ca (kgf)	420						
동정격하중 Co (kgf)	720						
축운동	0.005이승						
전하중 토크 (kgf-cm)	0.1~0.5	0.1 이하					

다.	위:	mn

	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R12-10B1-1FSWE-160-230-0.008	160	175	230	10	3	0.012	0.008
1R12-10B1-1FSWE-210-280-0.008	210	225	280	10	3	0.012	0.008
1R12-10B1-1FSWE-310-380-0.008	310	325	380	15	3	0.012	0.008
1R12-10B1-1FSWE-410-480-0.008	410	425	480	15	3	0.013	0.008
1R12-10B1-1FSWE-510-580-0.008	510	525	580	15	3	0.015	0.008

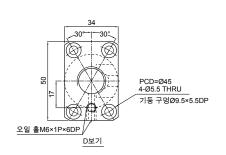



볼스크류 사양							
제품규격	예압품	미세간격					
나사산 수/나사산 방향	1/ 오른쪽						
BCD	14.6						
리드	5						
볼 직경.	3.175						
유효 회전수 (서킷×로우)	2.5	×1					
진입각	6.	22					
정정격하중 Ca (kgf)	67	75					
동정격하중 Co (kgf)	1145						
축운동	0 0.005이ㅎ						
전하중 토크 (kgf-cm)	0.15~0.7	0.2 이하					

단위: *mm*

	나사 스핀들 (샤프트) 길이				정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출	
1R14-05B1-1FSWC-189-271-0.008	189	204	271	10	3	0.012	0.008	
1R14-05B1-1FSWC-239-321-0.008	239	254	321	10	3	0.012	0.008	
1R14-05B1-1FSWC-339-421-0.008	339	354	421	15	3	0.012	0.008	
1R14-05B1-1FSWC-439-521-0.008	439	454	521	15	3	0.012	0.008	
1R14-05B1-1FSWC-539-621-0.008	539	554	621	15	3	0.012	0.008	
1R14-05B1-1FSWC-689-771-0.008	689	704	771	15	3	0.013	0.008	

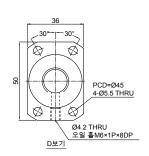
FSWC ^{표준 볼스크류} 축경 Ø15 리드 10



볼스크류 사양						
제품규격	예압품	미세간격				
나사산 수/나사산 방향	1/ 오른쪽					
BCD	15.6					
리드	10					
볼 직경.	3.175					
유효 회전수 (서킷×로우)	2.5	×1				
진입각	11	.53				
정정격하중 Ca (kgf)	68	30				
동정격하중 Co (kgf)	1210					
축운동	0.005이승					
전하중 토크 (kgf-cm)	0.1~0.79	0.24 이하				

F	ㅏ우	ŀ	mn

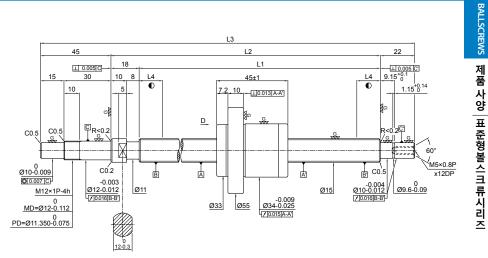
	나사 스핀들 (샤프트) 길이				정도	ī	리드 정도
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R15-10B1-1FSWC-189-271-0.018	189	204	271	10	5	0.023	0.018
1R15-10B1-1FSWC-239-321-0.018	239	254	321	10	5	0.023	0.018
1R15-10B1-1FSWC-289-371-0.018	289	304	371	15	5	0.023	0.018
1R15-10B1-1FSWC-339-421-0.018	339	354	421	15	5	0.023	0.018
1R15-10B1-1FSWC-389-471-0.018	389	404	471	15	5	0.025	0.018
1R15-10B1-1FSWC-439-521-0.018	439	454	521	15	5	0.025	0.018
1R15-10B1-1FSWC-489-571-0.018	489	504	571	15	5	0.027	0.018

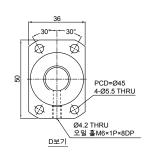


볼스크류 사양							
제품규격	예압품 미세간격						
나사산 수/나사산 방향	1/ 오른쪽						
BCD	15	5.6					
리드	10						
볼 직경.	3.175						
유효 회전수 (서킷×로우)	2.5 × 1						
진입각	11.	.53					
정정격하중 Ca (kgf)	68	30					
동정격하중 Co (kgf)	1210						
축운동	0 0.005이ㅎ						
전하중 토크 (kgf-cm)	0.1~0.79	0.24 이하					

단위: mm

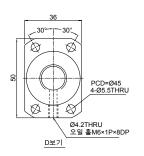
	나사 스핀들 (샤프트) 길이			정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R15-10B1-1FSWC-539-621-0.018	539	554	621	15	5	0.027	0.018
1R15-10B1-1FSWC-589-671-0.018	589	604	671	15	5	0.030	0.018
1R15-10B1-1FSWC-639-721-0.018	639	654	721	15	5	0.030	0.018
1R15-10B1-1FSWC-689-771-0.018	689	704	771	15	5	0.035	0.018
1R15-10B1-1FSWC-789-871-0.018	789	804	871	15	5	0.035	0.018
1R15-10B1-1FSWC-889-971-0.018	889	904	971	15	5	0.040	0.018
1R15-10B1-1FSWC-1089-1171-0.018	1089	1104	1171	15	5	0.046	0.018




FSKC ^{표준 볼스크류} 축경Ø15 리드20

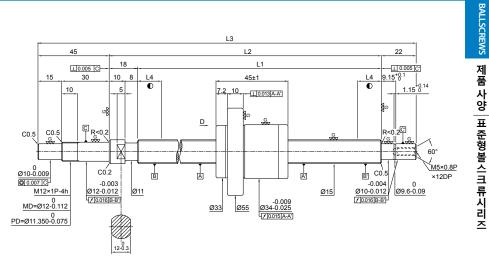
볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/ 오	.른쪽			
BCD	15	5.6			
리드	20				
볼 직경.	3.175				
유효 회전수 (서킷×로우)	1.8 × 1				
진입각	22.2				
정정격하중 Ca (kgf)	780				
동정격하중 Co (kgf)	1400				
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.15~0.8	0.24 이하			

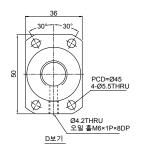
단위: *mm*


	나사 스핀들 (샤프트) 길이			정도		리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출
1R15-20A1-1FSKC-186-271-0.018	186	204	271	10	5	0.023	0.018
1R15-20A1-1FSKC-236-321-0.018	236	254	321	10	5	0.023	0.018
1R15-20A1-1FSKC-286-371-0.018	286	304	371	15	5	0.023	0.018
1R15-20A1-1FSKC-336-421-0.018	336	354	421	15	5	0.023	0.018
1R15-20A1-1FSKC-386-471-0.018	386	404	471	15	5	0.025	0.018
1R15-20A1-1FSKC-436-521-0.018	436	454	521	15	5	0.025	0.018
1R15-20A1-1FSKC-486-571-0.018	486	504	571	15	5	0.027	0.018

볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/ 오	.른쪽			
BCD	15	5.6			
리드	20				
볼 직경.	3.175				
유효 회전수 (서킷×로우)	1.8 × 1				
진입각	22.2				
정정격하중 Ca (kgf)	780				
동정격하중 Co (kgf)	1400				
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.15~0.8	0.24 이하			

	나사 스핀들 (샤프트) 길이			길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R15-20A1-1FSKC-536-621-0.018	536	554	621	15	5	0.027	0.018
1R15-20A1-1FSKC-586-671-0.018	586	604	671	15	5	0.030	0.018
1R15-20A1-1FSKC-636-721-0.018	636	654	721	15	5	0.030	0.018
1R15-20A1-1FSKC-686-771-0.018	686	704	771	15	5	0.030	0.018
1R15-20A1-1FSKC-786-871-0.018	786	804	871	15	5	0.035	0.018
1R15-20A1-1FSKC-886-971-0.018	886	904	971	15	5	0.040	0.018
1R15-20A1-1FSKC-1086-1171-0.018	1086	1104	1171	15	5	0.046	0.018

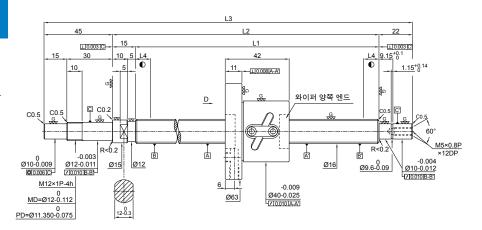


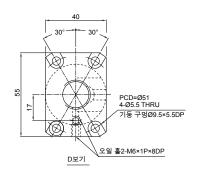

FSKC 표준 볼스크류 축경 Ø15 리드 20

볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	2/ 오	.른쪽			
BCD	15	5.6			
리드	20				
볼 직경.	3.175				
유효 회전수 (서킷×로우)	1.8 × 2				
진입각	22.2				
정정격하중 Ca (kgf)	1400				
동정격하중 Co (kgf)	2800				
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.2~0.9	-			

단위	ŀ	mm

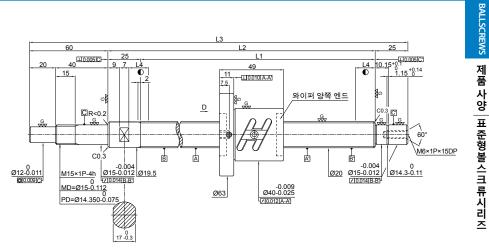
	나사 스핀들 (샤프트) 길이			정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
2R15-20A1-1FSKC-236-321-0.018	236	254	321	10	5	0.023	0.018
2R15-20A1-1FSKC-286-371-0.018	286	304	371	10	5	0.023	0.018
2R15-20A1-1FSKC-336-421-0.018	336	354	421	15	5	0.023	0.018
2R15-20A1-1FSKC-386-471-0.018	386	404	471	15	5	0.025	0.018
2R15-20A1-1FSKC-436-521-0.018	436	454	521	15	5	0.025	0.018
2R15-20A1-1FSKC-486-571-0.018	486	504	571	15	5	0.027	0.018

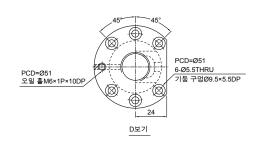



볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	2/ 오	른쪽			
BCD	15	5.6			
리드	2	0			
볼 직경.	3.175				
유효 회전수 (서킷×로우)	1.8 × 2				
진입각	22.2				
정정격하중 Ca (kgf)	1400				
동정격하중 Co (kgf)	2800				
축운동	0 0.0050				
전하중 토크 (kgf-cm)	0.2~0.9	-			

	1 L 1	사스핀들 (THE EVE	710I		-	 리드 정도
모델 번호	-12	(스펀글)	ハユニ) 1	크이	정도		
포글 전포	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e₃∞에 서의 리드 도출
2R15-20A1-1FSKC-536-621-0.018	536	554	621	15	5	0.027	0.018
2R15-20A1-1FSKC-586-671-0.018	586	604	671	15	5	0.030	0.018
2R15-20A1-1FSKC-636-721-0.018	636	654	721	15	5	0.030	0.018
2R15-20A1-1FSKC-686-771-0.018	686	704	771	15	5	0.030	0.018
2R15-20A1-1FSKC-786-871-0.018	786	804	871	15	5	0.035	0.018
2R15-20A1-1FSKC-886-971-0.018	886	904	971	15	5	0.040	0.018

FSWC ^{표준 볼스크류} 축경 Ø16 리드 05

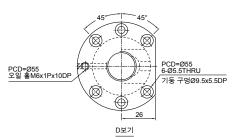




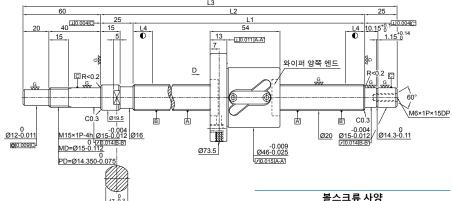
볼스크류 사양					
제품규격	예압품	미세간격			
나사산 수/나사산 방향	1/ 오	.른쪽			
BCD	16	5.6			
리드	5				
볼 직경.	3.175				
유효 회전수 (서킷×로우)	2.5 × 1				
진입각	5.48				
정정격하중 Ca (kgf)	690				
동정격하중 Co (kgf)	1270				
축운동	0	0.005이하			
전하중 토크 (kgf-cm)	0.15~0.8 0.2 이형				

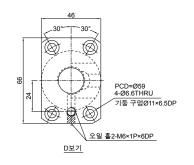
단위	2 : mm
----	--------

	나시	· 스핀들 ([샤프트) [길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R16-05B1-1FSWC-189-271-0.018	189	204	271	10	5	0.023	0.018
1R16-05B1-1FSWC-289-371-0.018	289	304	371	10	5	0.023	0.018
1R16-05B1-1FSWC-389-471-0.018	389	404	471	15	5	0.025	0.018
1R16-05B1-1FSWC-489-571-0.018	489	504	571	15	5	0.027	0.018
1R16-05B1-1FSWC-689-771-0.018	689	704	771	15	5	0.035	0.018
1R16-05B1-1FSWC-889-971-0.018	889	904	971	15	5	0.040	0.018



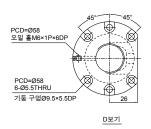
볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	20.4					
리드	4					
볼 직경.	2.381					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	3.57					
정정격하중 Ca (kgf)	820					
동정격하중 Co (kgf)	2110					
축운동	0					
전하중 토크 (kgf-cm)	0.12~0.68					


	나시	사스핀들 ((샤프트) [길이	정도		리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출	
1R20-04B2-1FSWC-225-335-0.018	225	250	335	10	5	0.023	0.018	
1R20-04B2-1FSWC-275-385-0.018	275	300	385	10	5	0.023	0.018	
1R20-04B2-1FSWC-375-485-0.018	375	400	485	15	5	0.025	0.018	
1R20-04B2-1FSWC-475-585-0.018	475	500	585	15	5	0.027	0.018	
1R20-04B2-1FSWC-575-685-0.018	575	600	685	15	5	0.030	0.018	
1R20-04B2-1FSWC-675-785-0.018	675	700	785	15	5	0.035	0.018	


FSWC ^{표준 볼스크류} 축경 Ø20 리드 05

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	20.6					
리드	5					
볼 직경.	3.175					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	4.42					
정정격하중 Ca (kgf)	1510					
동정격하중 Co (kgf)	3460					
축운동	0					
전하중 토크 (kgf-cm)	0.28~1.32					

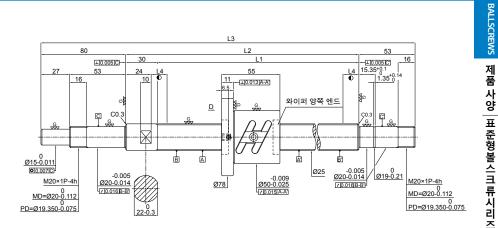
	나시	사스핀들	(샤프트) 점	길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R20-05B2-1FSWC-225-335-0.018	225	250	335	10	5	0.023	0.018
1R20-05B2-1FSWC-275-385-0.018	275	300	385	10	5	0.023	0.018
1R20-05B2-1FSWC-375-485-0.018	375	400	485	15	5	0.025	0.018
1R20-05B2-1FSWC-475-585-0.018	475	500	585	15	5	0.027	0.018
1R20-05B2-1FSWC-575-685-0.018	575	600	685	15	5	0.030	0.018
1R20-05B2-1FSWC-775-885-0.018	775	800	885	10	5	0.035	0.018

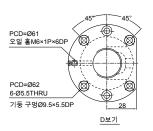


볼스크류 사양						
제품규격	예압품	미세간격				
나사산 수/나사산 방향	1/ 오	.른쪽				
BCD	20).7				
리드	1	0				
볼 직경.	3.969					
유효 회전수 (서킷×로우)	2.5 × 1					
진입각	8.78					
정정격하중 Ca (kgf)	1100					
동정격하중 Co (kgf)	2120					
축운동	0	0.005이하				
전하중 토크 (kgf-cm)	0.2~0.1.2	0.3 이하				

단위: *mm*

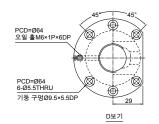
						1	
- FILL	나시	사스핀들	(샤프트) [길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R20-10B1-1FSWC-289-399-0.018	289	314	399	10	5	0.023	0.018
1R20-10B1-1FSWC-389-499-0.018	389	414	499	10	5	0.025	0.018
1R20-10B1-1FSWC-489-599-0.018	489	514	599	15	5	0.027	0.018
1R20-10B1-1FSWC-589-699-0.018	589	614	699	15	5	0.030	0.018
1R20-10B1-1FSWC-689-799-0.018	689	714	799	15	5	0.035	0.018
1R20-10B1-1FSWC-789-899-0.018	789	814	899	15	5	0.035	0.018
1R20-10B1-1FSWC-889-999-0.018	889	914	999	15	5	0.040	0.018
1R20-10B1-1FSWC-989-1099-0.018	989	1014	1099	15	5	0.040	0.018
1R20-10B1-1FSWC-1089-1199-0.018	1089	1114	1199	15	5	0.046	0.018
1R20-10B1-1FSWC-1189-1299-0.018	1189	1214	1299	15	5	0.046	0.018
1R20-10B1-1FSWC-1289-1399-0.018	1289	1314	1399	15	5	0.046	0.018




FSWC 표준 볼스크류 축경 Ø25 리드 04

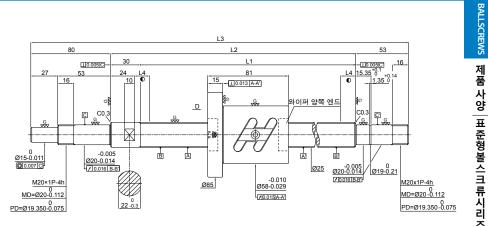
볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	25.4					
리드	4					
볼 직경.	2.381					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	2.87					
정정격하중 Ca (kgf)	930					
동정격하중 Co (kgf)	2710					
축운동	0					
전하중 토크 (kgf-cm)	0.15~0.85					

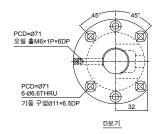
단위: *mm*


	나시	l 스핀들 ((샤프트)	길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서 의 리드 도출
1R25-04B2-1FSWC-220-383-0.018	220	250	383	10	5	0.023	0.018
1R25-04B2-1FSWC-270-433-0.018	270	300	433	10	5	0.023	0.018
1R25-04B2-1FSWC-370-533-0.018	370	400	533	15	5	0.025	0.018
1R25-04B2-1FSWC-470-633-0.018	470	500	633	15	5	0.027	0.018
1R25-04B2-1FSWC-570-733-0.018	570	600	733	15	5	0.030	0.018
1R25-04B2-1FSWC-770-933-0.018	770	800	933	10	5	0.035	0.018

볼스크류 사양						
제품규격	예압품	미세간격				
나사산 수/나사산 방향	1/ 오	른쪽				
BCD	20).7				
리드	5					
볼 직경.	3.969					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	8.78					
정정격하중 Ca (kgf)	1100					
동정격하중 Co (kgf)	2120					
축운동	0	0.005이하				
전하중 토크 (kgf-cm)	0.2~0.1.2	0.3 이하				

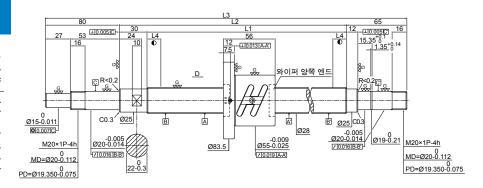
	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R25-05B2-1FSWC-220-383-0.018	220	250	383	10	5	0.023	0.018
1R25-05B2-1FSWC-270-433-0.018	270	300	433	10	5	0.023	0.018
1R25-05B2-1FSWC-370-533-0.018	370	400	533	15	5	0.025	0.018
1R25-05B2-1FSWC-470-633-0.018	470	500	633	15	5	0.027	0.018
1R25-05B2-1FSWC-570-733-0.018	570	600	733	15	5	0.030	0.018
1R25-05B2-1FSWC-670-833-0.018	670	700	833	15	5	0.030	0.018
1R25-05B2-1FSWC-770-933-0.018	770	800	933	15	5	0.035	0.018
1R25-05B2-1FSWC-970-1133-0.018	970	1000	1133	15	5	0.040	0.018
1R25-05B2-1FSWC-1170-1333-0.018	1170	1200	1333	15	5	0.046	0.018

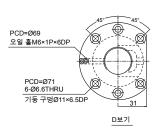



FSWC ^{표준 볼스크류} 축경 Ø25 리드 06

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	25.7					
리드	6					
볼 직경.	3.969					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	4.25					
정정격하중 Ca (kgf)	2190					
동정격하중 Co (kgf)	5360					
축운동	0					
전하중 토크 (kgf-cm)	0.42~2.4					

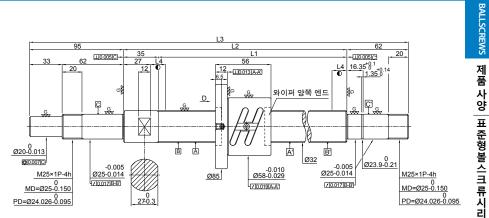
단위: *mm*

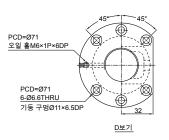

	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e‱에 서의 리드 도출
1R25-06B2-1FSWC-370-533-0.018	370	400	533	15	5	0.025	0.018
1R25-06B2-1FSWC-570-733-0.018	570	600	733	15	5	0.030	0.018
1R25-06B2-1FSWC-770-933-0.018	770	800	933	15	5	0.035	0.018
1R25-06B2-1FSWC-1170-1333-0.018	1170	1200	1333	15	5	0.046	0.018



볼스크류 사양							
예압품							
1/ 오른쪽							
26							
10							
4.762							
1.5 × 2							
6.98							
1820							
3840							
0							
0.42~2.4							

	나시	· 스핀들 ([샤프트] [길이	정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e _∞ 에서의 리드 도출
1R25-10A2-1FSWC-370-533-0.018	370	400	533	10	5	0.025	0.018
1R25-10A2-1FSWC-570-733-0.018	570	600	733	10	5	0.030	0.018
1R25-10A2-1FSWC-770-933-0.018	770	800	933	15	5	0.035	0.018
1R25-10A2-1FSWC-970-1133-0.018	970	1000	1133	15	5	0.040	0.018
1R25-10A2-1FSWC-1170-1333-0.018	1170	1200	1333	15	5	0.046	0.018
1R25-10A2-1FSWC-1470-1633-0.018	1470	1500	1633	15	5	0.054	0.018

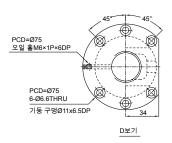



FSWC ^{표준 볼스크류} 축경 Ø28 리드 05

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	28.6					
리드	5					
볼 직경.	3.175					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	3.19					
정정격하중 Ca (kgf)	1720					
동정격하중 Co (kgf)	4940					
축운동	0					
전하중 토크 (kgf-cm)	0.3~1.7					

단우	ŀ	122 122
- 1 ' T	ŀ	IIIIII

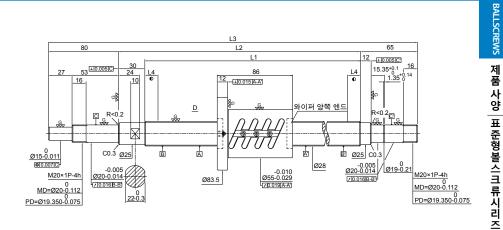
	나사 스핀들 (샤프트) 길이			정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e‱ 에서의 리드 도출
1R28-05B2-1FSWC-270-445-0.018	270	300	445	10	5	0.023	0.018
1R28-05B2-1FSWC-370-545-0.018	370	400	545	15	5	0.023	0.018
1R28-05B2-1FSWC-470-645-0.018	470	500	645	15	5	0.023	0.018
1R28-05B2-1FSWC-558-733-0.018	558	588	733	15	5	0.023	0.018
1R28-05B2-1FSWC-758-933-0.018	758	788	933	15	5	0.025	0.018
1R28-05B2-1FSWC-958-1133-0.018	958	988	1133	15	5	0.025	0.018
1R28-05B2-1FSWC-1158-1333-0.018	1158	1188	1333	15	5	0.027	0.018

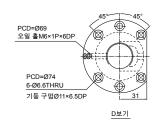


볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	32.6					
리드	5					
볼 직경.	3.175					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	2.79					
정정격하중 Ca (kgf)	1830					
동정격하중 Co (kgf)	5680					
축운동	0					
전하중 토크 (kgf-cm)	0.48~1.92					

단위: *mm*

	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e‱에 서의 리드 도출
1R32-05B2-1FSWC-265-457-0.018	265	300	457	10	5	0.023	0.018
1R32-05B2-1FSWC-365-557-0.018	365	400	557	15	5	0.025	0.018
1R32-05B2-1FSWC-465-657-0.018	465	500	657	15	5	0.027	0.018
1R32-05B2-1FSWC-565-757-0.018	565	600	757	15	5	0.030	0.018
1R32-05B2-1FSWC-665-857-0.018	665	700	857	15	5	0.030	0.018
1R32-05B2-1FSWC-765-957-0.018	765	800	957	15	5	0.035	0.018
1R32-05B2-1FSWC-965-1157-0.018	965	1000	1157	15	5	0.040	0.018
1R32-05B2-1FSWC-1165-1357-0.018	1165	1200	1357	15	5	0.046	0.018
1R32-05B2-1FSWC-1465-1657-0.018	1465	1500	1657	15	5	0.054	0.018

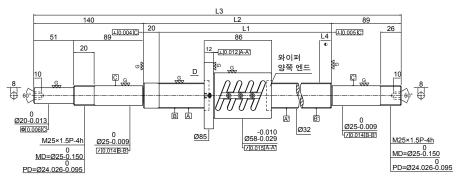

제품

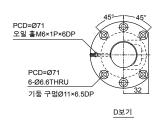


볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	32.7					
리드	6					
볼 직경.	3.969					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	3.34					
정정격하중 Ca (kgf)	2410					
동정격하중 Co (kgf)	6900					
축운동	0					
전하중 토크 (kgf-cm)	0.48~2.72					

다으	ŀ	mm
		111111

	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출
1R32-06B2-1FSWC-365-557-0.018	365	400	557	15	5	0.025	0.018
1R32-06B2-1FSWC-565-757-0.018	565	600	757	15	5	0.030	0.018
1R32-06B2-1FSWC-765-957-0.018	765	800	957	15	5	0.035	0.018
1R32-06B2-1FSWC-965-1157-0.018	965	1000	1157	15	5	0.040	0.018
1R32-06B2-1FSWC-1165-1357-0.018	1165	1200	1357	15	5	0.046	0.018
1R32-06B2-1FSWC-1465-1657-0.018	1465	1500	1657	15	5	0.054	0.018

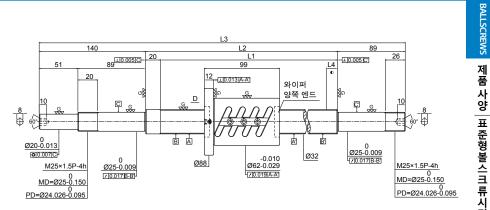


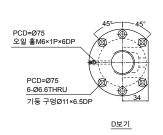


볼스크류 사양							
제품규격	예압품						
나사산 수/나사산 방향	1/ 오른쪽						
BCD	28.6						
리드	5						
볼 직경.	3.175						
유효 회전수 (서킷×로우)	$2.5 \times 2(2)$						
진입각	3.19						
정정격하중 Ca (kgf)	1720						
동정격하중 Co (kgf)	4940						
축운동	0						
전하중 토크 (kgf-cm)	1.1~3.3						

단위: mm

모델 번호	나사 스핀들 (샤프트) 길이				정도	리드 정도	
	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R28-05B2-1FOWC-270-445-0.018	270	300	445	10	5	0.023	0.018
1R28-05B2-1FOWC-370-545-0.018	370	400	545	15	5	0.025	0.018
1R28-05B2-1FOWC-470-645-0.018	470	500	645	15	5	0.027	0.018
1R28-05B2-1FOWC-558-733-0.018	558	588	733	15	5	0.030	0.018
1R28-05B2-1FOWC-758-933-0.018	758	788	933	15	5	0.035	0.018
1R28-05B2-1FOWC-958-1133-0.018	958	988	1133	15	5	0.040	0.018
1R28-05B2-1FOWC-1158-1333-0.018	1158	1188	1333	15	5	0.046	0.018

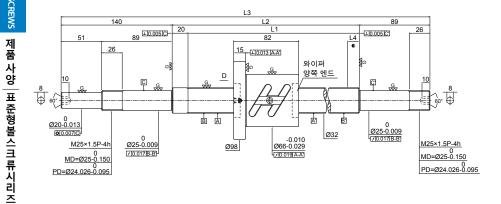

FOWC ^{표준 볼스크류} 축경 Ø32 리드 05

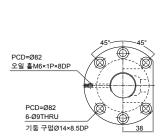

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	32.6				
리드	5				
볼 직경.	3.175				
유효 회전수 (서킷×로우)	2.5 × 2(2)				
진입각	2.79				
정정격하중 Ca (kgf)	1830				
동정격하중 Co (kgf)	5680				
축운동	0				
전하중 토크 (kgf-cm)	1.2~3.6				

볼 직경.	3.175
효 회전수 (서킷×로우)	2.5 × 2(2)
진입각	2.79
정정격하중 Ca (kgf)	1830
동정격하중 Co (kgf)	5680
축운동	0
전하중 토크 (kgf-cm)	1.2~3.6

	mm

	나시	나사 스핀들 (샤프트) 길이			정도	2	드 정도
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R32-05B2-1FOWC-280-529-0.018	280	300	529	10	5	0.023	0.018
1R32-05B2-1FOWC-380-629-0.018	380	400	629	15	5	0.025	0.018
1R32-05B2-1FOWC-480-729-0.018	480	500	729	15	5	0.027	0.018
1R32-05B2-1FOWC-580-829-0.018	580	600	829	15	5	0.030	0.018
1R32-05B2-1FOWC-680-929-0.018	680	700	929	15	5	0.035	0.018
1R32-05B2-1FOWC-780-1029-0.018	780	800	1029	15	5	0.035	0.018
1R32-05B2-1FOWC-980-1229-0.018	980	1000	1229	15	5	0.040	0.018
1R32-05B2-1FOWC-1180-1429-0.018	1180	1200	1429	15	5	0.046	0.018
1R32-05B2-1FOWC-1480-1729-0.018	1480	1500	1729	15	5	0.054	0.018

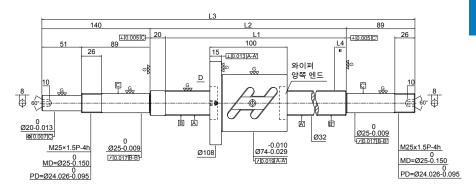


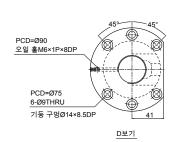

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	32.7				
리드	6				
볼 직경.	3.969				
유효 회전수 (서킷×로우)	2.5 × 2(2)				
진입각	3.34				
정정격하중 Ca (kgf)	2410				
동정격하중 Co (kgf)	6900				
축운동	0				
전하중 토크 (kgf-cm)	2.32~4.82				

단위: mm

							E 11
	나사 스핀들 (샤프트) 길이				정도	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R32-06B2-1FOWC-380-629-0.018	380	400	629	15	5	0.025	0.018
1R32-06B2-1FOWC-580-829-0.018	580	600	829	15	5	0.030	0.018
1R32-06B2-1FOWC-780-1029-0.018	780	800	1029	15	5	0.035	0.018
1R32-06B2-1FOWC-980-1229-0.018	980	1000	1229	15	5	0.040	0.018
1R32-06B2-1FOWC-1180-1429-0.018	1180	1200	1429	15	5	0.046	0.018
1R32-06B2-1FOWC-1480-1729-0.018	1480	1500	1729	15	5	0.054	0.018

BALLSCREWS

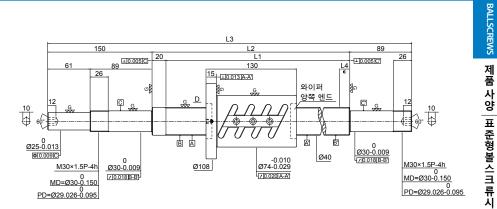

D보기

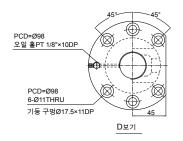

FOWC ^{표준 볼스크류} 축경 Ø32 리드 08

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	33				
리드	8				
볼 직경.	4.762				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	4.41				
정정격하중 Ca (kgf)	1720				
동정격하중 Co (kgf)	4180				
축운동	0				
전하중 토크 (kgf-cm)	1.26~5.06				

단위	ŀ	122 122
1 ' T	ŀ	IIIIIII

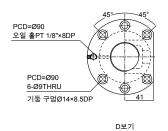
	나사 스핀들 (샤프트) 길이			정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R32-08B1-1FOWC-380-629-0.018	380	400	629	15	5	0.025	0.018
1R32-08B1-1FOWC-580-829-0.018	580	600	829	15	5	0.030	0.018
1R32-08B1-1FOWC-780-1029-0.018	780	800	1029	15	5	0.035	0.018
1R32-08B1-1FOWC-980-1229-0.018	980	1000	1229	15	5	0.040	0.018
1R32-08B1-1FOWC-1480-1729-0.018	1480	1500	1729	15	5	0.054	0.018





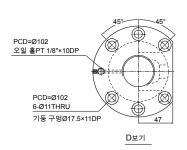
볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	33.4				
리드	10				
볼 직경.	6.35				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	5.44				
정정격하중 Ca (kgf)	2570				
동정격하중 Co (kgf)	5440				
축운동	0				
전하중 토크 (kgf-cm)	3.58~7.44				

단위: *mm*


	나사 스핀들 (샤프트) 길이			정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R32-10B1-1FOWC-380-629-0.018	380	400	629	15	5	0.025	0.018
1R32-10B1-1FOWC-480-729-0.018	480	500	729	15	5	0.027	0.018
1R32-10B1-1FOWC-580-829-0.018	580	600	829	15	5	0.030	0.018
1R32-10B1-1FOWC-680-929-0.018	680	700	929	15	5	0.030	0.018
1R32-10B1-1FOWC-780-1029-0.018	780	800	1029	15	5	0.035	0.018
1R32-10B1-1FOWC-980-1229-0.018	980	1000	1229	15	5	0.040	0.018
1R32-10B1-1FOWC-1180-1429-0.018	1180	1200	1429	15	5	0.046	0.018
1R32-10B1-1FOWC-1480-1729-0.018	1480	1500	1729	15	5	0.054	0.018
1R32-10B1-1FOWC-1780-2029-0.018	1780	1800	2029	15	5	0.065	0.018

FOWC ^{표준 볼스크류} 축경 Ø36 리드 10

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	37.4				
리드	10				
볼 직경.	6.35				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	4.86				
정정격하중 Ca (kgf)	2720				
동정격하중 Co (kgf)	6180				
축운동	0				
전하중 토크 (kgf-cm)	3.91~8.13				

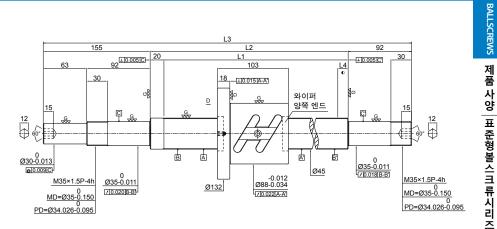

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	41				
리드	8				
볼 직경.	4.762				
유효 회전수 (서킷×로우)	$2.5 \times 2(2)$				
진입각	3.55				
정정격하중 Ca (kgf)	3450				
동정격하중 Co (kgf)	10540				
축운동	0				
전하중 토크 (kgf-cm)	4.24~8.82				

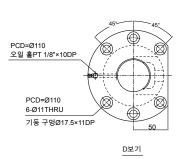
_				
	ᅡ우	ŀ	m	m

	나시	나사 스핀들 (샤프트) 길이				리드 정도		
모델 번호	L1	L2	L3	L4	정도 등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에 서의 리드 도출	
1R36-10B1-1FOWC-480-739-0.018	480	500	739	15	5	0.027	0.018	
1R36-10B1-1FOWC-680-939-0.018	680	700	939	15	5	0.030	0.018	
1R36-10B1-1FOWC-980-1239-0.018	980	1000	1239	15	5	0.040	0.018	
1R36-10B1-1FOWC-1380-1639-0.018	1380	1400	1639	15	5	0.054	0.018	
1R36-10B1-1FOWC-1780-2039-0.018	1780	1800	2039	15	5	0.065	0.018	

단위: *mm*

	나시	나사 스핀들 (샤프트) 길이				리드 정도	
모델 번호	L1	L2	L3	L4	정도 등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R40-08B2-1FOWC-380-639-0.018	380	400	639	15	5	0.025	0.018
1R40-08B2-1FOWC-580-839-0.018	580	600	839	15	5	0.030	0.018
1R40-08B2-1FOWC-780-1039-0.018	780	800	1039	15	5	0.035	0.018
1R40-08B2-1FOWC-980-1239-0.018	980	1000	1239	15	5	0.040	0.018
1R40-08B2-1FOWC-1180-1439-0.018	1180	1200	1439	15	5	0.046	0.018
1R40-08B2-1FOWC-1580-1839-0.018	1580	1600	1839	15	5	0.054	0.018

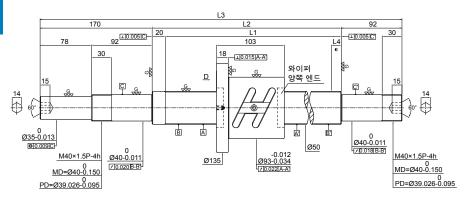


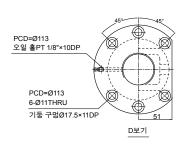

FOWC ^{표준 볼스크류} 축경 Ø40 리드 10

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	41.4				
리드	10				
볼 직경.	6.35				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	4.4				
정정격하중 Ca (kgf)	2880				
동정격하중 Co (kgf)	6950				
축운동	0				
전하중 토크 (kgf-cm)	4.57~8.49				

단위	P: mm
----	-------

	나시	사스핀들([샤프트) [길이	정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출	
1R40-10B1-1FOWC-480-739-0.018	480	500	739	15	5	0.027	0.018	
1R40-10B1-1FOWC-580-839-0.018	580	600	839	15	5	0.030	0.018	
1R40-10B1-1FOWC-680-939-0.018	680	700	939	15	5	0.030	0.018	
1R40-10B1-1FOWC-780-1039-0.018	780	800	1039	15	5	0.035	0.018	
1R40-10B1-1FOWC-980-1239-0.018	980	1000	1239	15	5	0.040	0.018	
1R40-10B1-1FOWC-1180-1439-0.018	1180	1200	1439	15	5	0.046	0.018	
1R40-10B1-1FOWC-1380-1639-0.018	1380	1400	1639	15	5	0.054	0.018	
1R40-10B1-1FOWC-1580-1839-0.018	1580	1600	1839	15	5	0.054	0.018	
1R40-10B1-1FOWC-1780-2039-0.018	1780	1800	2039	15	5	0.065	0.018	
1R40-10B1-1FOWC-2380-2639-0.018	2380	2400	2639	15	5	0.077	0.018	

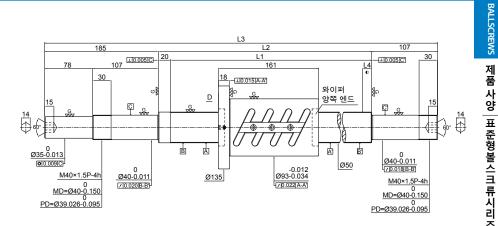


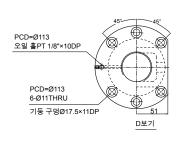


볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	46.4				
리드	10				
볼 직경.	6.35				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	4.4				
정정격하중 Ca (kgf)	3020				
동정격하중 Co (kgf)	7850				
축운동	0				
전하중 토크 (kgf-cm)	4.58~9.5				

단위: *mm*

	나사 스핀들 (샤프트) 길이				정도	2	드 정도
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R45-10B1-1FOWC-680-947-0.018	680	700	947	15	5	0.035	0.018
1R45-10B1-1FOWC-980-1247-0.018	980	1000	1247	15	5	0.04	0.018
1R45-10B1-1FOWC-1380-1647-0.018	1380	1400	1647	15	5	0.054	0.018
1R45-10B1-1FOWC-1780-2047-0.018	1780	1800	2047	15	5	0.065	0.018
1R45-10B1-1FOWC-2480-2747-0.018	2480	2500	2747	15	5	0.077	0.018

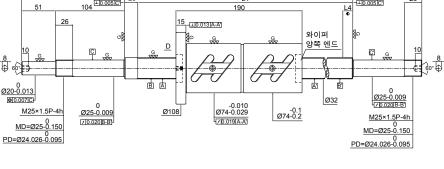


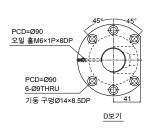

FOWC ^{표준 볼스크류} 축경 Ø50 리드 10

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	51.4				
리드	10				
볼 직경.	6.35				
유효 회전수 (서킷×로우)	2.5 × 1(2)				
진입각	3.54				
정정격하중 Ca (kgf)	3190				
동정격하중 Co (kgf)	8710				
축운동	0				
전하중 토크 (kgf-cm)	4.84~11.28				

단우	١.	
アリエ	I٠	mm

	나사 스핀들 (샤프트) 길이				나사 스핀들 (샤프트) 길		길이	정도	2	드 정도
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출			
1R50-10B1-1FOWC-580-862-0.018	580	600	862	15	5	0.030	0.018			
1R50-10B1-1FOWC-780-1062-0.018	780	800	1062	15	5	0.035	0.018			
1R50-10B1-1FOWC-980-1262-0.018	980	1000	1262	15	5	0.040	0.018			
1R50-10B1-1FOWC-1180-1462-0.018	1180	1200	1462	15	5	0.046	0.018			
1R50-10B1-1FOWC-1480-1762-0.018	1480	1500	1762	15	5	0.054	0.018			
1R50-10B1-1FOWC-1980-2262-0.018	1980	2000	2262	15	5	0.065	0.018			
1R50-10B1-1FOWC-2580-2862-0.018	2580	2600	2862	15	5	0.093	0.018			

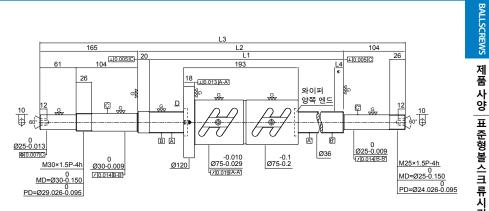


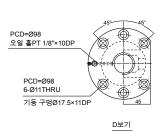


볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	51.4					
리드	10					
볼 직경.	6.35					
유효 회전수 (서킷×로우)	$2.5 \times 2(2)$					
진입각	3.54					
정정격하중 Ca (kgf)	5790					
동정격하중 Co (kgf)	17420					
축운동	0					
전하중 토크 (kgf-cm)	10.48~17.48					

단위: *mm*

나사 스핀들 (샤프트) 길이						리드 정도		
모델 번호	L1	L2	L3	L4	. 정도 등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출	
1R50-10B2-1FOWC-580-892-0.018	580	600	892	15	5	0.030	0.018	
1R50-10B2-1FOWC-780-1092-0.018	780	800	1092	15	5	0.035	0.018	
1R50-10B2-1FOWC-980-1292-0.018	980	1000	1292	15	5	0.040	0.018	
1R50-10B2-1FOWC-1180-1492-0.018	1180	1200	1492	15	5	0.046	0.018	
1R50-10B2-1FOWC-1480-1792-0.018	1480	1500	1792	15	5	0.054	0.018	
1R50-10B2-1FOWC-1980-2292-0.018	1980	2000	2292	15	5	0.065	0.018	
1R50-10B2-1FOWC-2580-2892-0.018	2580	2600	2892	15	5	0.093	0.018	

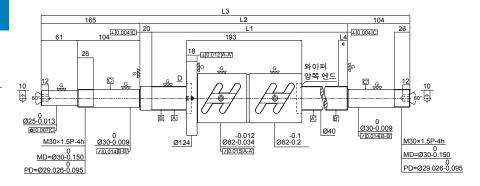


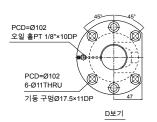

FDWC ^{표준 볼스크류} 축경 Ø32 리드 10

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	33.4					
리드	10					
볼 직경.	6.35					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	5.44					
정정격하중 Ca (kgf)	4660					
동정격하중 Co (kgf)	10880					
축운동	0					
전하중 토크 (kgf-cm)	5.51~11.43					

단우	ŀ	122 122
- 1 ' T	ŀ	IIIIII

	나시	· 스핀들 ((샤프트) [길이	정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출	
1R32-10B2-1FDWC-380-659-0.018	380	400	659	15	5	0.025	0.018	
1R32-10B2-1FDWC-480-759-0.018	480	500	759	15	5	0.027	0.018	
1R32-10B2-1FDWC-580-859-0.018	580	600	859	15	5	0.030	0.018	
1R32-10B2-1FDWC-680-959-0.018	680	700	959	15	5	0.030	0.018	
1R32-10B2-1FDWC-780-1059-0.018	780	800	1059	15	5	0.035	0.018	
1R32-10B2-1FDWC-980-1259-0.018	980	1000	1259	15	5	0.040	0.018	
1R32-10B2-1FDWC-1180-1459-0.018	1180	1200	1459	15	5	0.046	0.018	
1R32-10B2-1FDWC-1480-1759-0.018	1480	1500	1759	15	5	0.054	0.018	
1R32-10B2-1FDWC-1780-2059-0.018	1780	1800	2059	15	5	0.065	0.018	

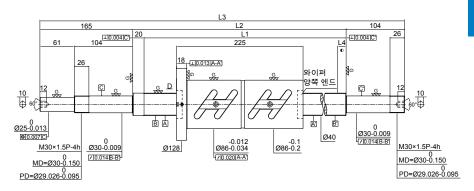


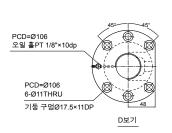

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	37.4					
리드	10					
볼 직경.	6.35					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	4.86					
정정격하중 Ca (kgf)	4930					
동정격하중 Co (kgf)	12360					
축운동	0					
전하중 토크 (kgf-cm)	6.64~12.34					

단위: *mm*

	나사 스핀들 (샤프트) 길이				정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출	
1R36-10B2-1FDWC-480-769-0.018	480	500	769	15	5	0.027	0.018	
1R36-10B2-1FDWC-680-969-0.018	680	700	969	15	5	0.035	0.018	
1R36-10B2-1FDWC-980-1269-0.018	980	1000	1269	15	5	0.040	0.018	
1R36-10B2-1FDWC-1380-1669-0.018	1380	1400	1669	15	5	0.054	0.018	
1R36-10B2-1FDWC-1780-2069-0.018	1780	1800	2069	15	5	0.065	0.018	

BALLSCREWS




FDWC ^{표준 볼스크류} 축경 Ø40 리드 10

볼스크류 사양						
제품규격	예압품					
나사산 수/나사산 방향	1/ 오른쪽					
BCD	41.4					
리드	10					
볼 직경.	6.35					
유효 회전수 (서킷×로우)	2.5 × 2					
진입각	4.4					
정정격하중 Ca (kgf)	5220					
동정격하중 Co (kgf)	13900					
축운동	0					
전하중 토크 (kgf-cm)	8.26~13.78					

단위	4:	mm
----	----	----

	나시	사스핀들([샤프트) [길이	정도	리드 정도		
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출	
1R40-10B2-1FDWC-480-769-0.018	480	500	769	15	5	0.027	0.018	
1R40-10B2-1FDWC-580-869-0.018	580	600	869	15	5	0.030	0.018	
1R40-10B2-1FDWC-680-969-0.018	680	700	969	15	5	0.030	0.018	
1R40-10B2-1FDWC-780-1069-0.018	780	800	1069	15	5	0.035	0.018	
1R40-10B2-1FDWC-980-1269-0.018	980	1000	1269	15	5	0.040	0.018	
1R40-10B2-1FDWC-1180-1469-0.018	1180	1200	1469	15	5	0.046	0.018	
1R40-10B2-1FDWC-1380-1669-0.018	1380	1400	1669	15	5	0.054	0.018	
1R40-10B2-1FDWC-1580-1869-0.018	1580	1600	1869	15	5	0.054	0.018	
1R40-10B2-1FDWC-1780-2069-0.018	1780	1800	2069	15	5	0.065	0.018	
1R40-10B2-1FDWC-2380-2269-0.018	2380	2400	2269	15	5	0.077	0.018	

볼스크류 사양					
제품규격	예압품				
나사산 수/나사산 방향	1/ 오른쪽				
BCD	41.5				
리드	12				
볼 직경.	7.144				
유효 회전수 (서킷×로우)	2.5 × 2				
진입각	5.26				
정정격하중 Ca (kgf)	6170				
동정격하중 Co (kgf)	15700				
축운동	0				
전하중 토크 (kgf-cm)	9.79~18.17				

단위: *mm*

	나사 스핀들 (샤프트) 길이 정도				2	리드 정도	
모델 번호	L1	L2	L3	L4	등급	축적 기준 리드 편차 E	랜덤 300mm e ₃₀₀ 에서의 리드 도출
1R40-12B2-1FDWC-680-969-0.018	680	700	969	15	5	0.030	0.018
1R40-12B2-1FDWC-980-1269-0.018	980	1000	1269	15	5	0.040	0.018
1R40-12B2-1FDWC-1380-1669-0.018	1380	1400	1669	15	5	0.054	0.018
1R40-12B2-1FDWC-1780-2069-0.018	1780	1800	2069	15	5	0.065	0.018
1R40-12B2-1FDWC-2480-2769-0.018	2480	2500	2769	15	5	0.077	0.018

PMI 전조 볼스크류

전조 볼스크류 소개

PMI 전조 볼스크류 생산에 다른 제조업체와는 다른 제조공정 및 장비를 도입해 왔습니다. 고급 기술 및 Bad Düben 디지털 전기 나사전조기를 함께 사용해, PMI 에서는 볼스크류 원자재 선택 및 전조 가공부터 고주파 경화 열처리 및 후반작업에 이르기까지 생산의 모든 단계에서 엄격한 품질관리 정책을 준수합니다. PMI는 고객 여러분께 최고의 품질을 자랑하는 제품을 제공하기 위해 최선을 다하고 있습니다. 전조 볼스크류 및 연삭 너트를 결합해 전통적인 ACME 스크류 및 사다리꼴 스크류를 대신해 왔습니다. 이를 통해 마찰 및 백래시를 줄이는 동시에 좀 더 부드럽게 작업을 할 수 있습니다. 게다가 새로운 기술에는 생산 속도 향상 및 원가 절감이라는 장점이 있습니다. 리드 편차 및 기하공차 정의에서의 차이점 외에도 전조 및 연삭 볼스크류는 예압을 가해 축 운동을 제거시킬 수 있습니다. 관련기술 정보는 PMI에 문의하십시오.

PMI 에서는 최첨단 디지털 전기 나사전조기를 사용합니다. 제조 과정에서 나사전조 다이 2 개의 축에 있는 오일 실린더는 유압 및 위치결정 정밀도를 보정하기 위해 서보 유압시스템을 사용합니다.

PMI 에서는 나사전조기의 안정성 및 전조 제품의 품질을 유지하기 위해 독일에서 수입한 Bad Düben 롤러를 사용합니다.

PMI 에서는 최첨단 디지털 전기 나사전조 기를 사용합니다. 제조 과정에서 나사전조 다이 2개의 축에 있는 오일 실린더는 유압 및 위치결정 정밀도를 보정하기 위해 서보 유압시스템을 사용합니다.

PMI 에서는 나사전조기의 안정성 및 전조 제품의 품질을 유지하기 위해 독일에서 수 입한 Bad Düben 롤러를 사용합니다.

PMI전조 볼스크류 특징

고정도 전조 너트

전조 너트의 제조 과정은 연삭 너트의 제조 과정과 동일합니다. 표면 경화 처리 및 내부 나사 산 연삭을 통해 내구성 및 평활도를 보증합니다.

너트 교체 가능

예압 없이 최대 허용 축운동 범위 내에서 다른 종류의 너트를 동일한 스크류에 사용할 수 있습니다.

전조 스크류 리드 정확도(e₃₀₀)

ISO 3408-3, 따르면, PMI 전조 볼스크류에 대한 리드 정도의 정의는 다음과 같습니다: 유효 나사산 길이 내 랜덤 300mm에서 축적 리드 편차의 허용 값. \mathbf{E}^1 과 같습니다:

표1 리드 정도

e₃₀₀ (유효 나사산 길이 내 랜덤 300mm에서 축적 리드 편차의 허용 값)

단위:*μm*

등급	C5	C 7	C8	C10
ISO, DIN	23	52	-	210
JIS	18	50	-	210
PMI	23	50	100	210

단위e。(유효 나사산 길이 내 축적 리드 편차의 허용 값)

단위:*μm*

등급	C5	C 7	C8	C10
PMI	e _p =±(lu/	300)×e₃₀₀ lu: 유.	효 나사산 길이 (딘	난위: <i>mm</i>)

단위: μm

e ₃₀₀ 등급 측정 길이	C5	C 7	C8	C10
0~100	20	44	84	178
101~200	22	48	92	194
201~315	25	50	100	210

PMI 전조 스크류의 외경 및 리드에 대한 기준표

PMI 전조 볼스크류는 표2~3에서 확인할 수 있듯이 사양, 리드 정도, 최대 구름 길이가 매우 다양합니다.

표2 전조 볼스크류 사양

스크류 공	리드											최대 전조 볼스크류				
칭 외경Ø	1	2	2.5	4	5	5.08	6	10	12	16	20	25	32	40	50	글으크ㅠ 길이
8	•	•	•													1000
10		•						•								1000
12				•	•			•	•							1500
14				•	•											3000
15					•			•		•	•					3000
16				•	•			•		•						3000
20				•	•			•			•			•		3000
25				•	•10	•/0		•				•				6000
28					•		•									6000
32					•10	•/0		•			•		•/0			6000
36								•								6000
38								•			•			•		6000
40					•			•			•			•		6000
50								•			•				•	6000
63								•			•					6000
80								•								6000

● : 오른나사 ○ : 왼나사

유의: 전조 볼스크류는 길이 및 정도에 제한이 있습니다. 기타 요건은 *PMI* 에 문의하십시오

표3 리드 정도 및 최대 전조 길이 스크류 외경

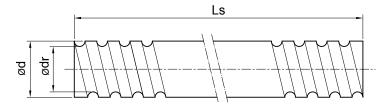
스크류 공 칭 외경		리드 정도 등급(e ₃₀₀))최대 구름 길이 (<i>mm</i>)	
Ø(mm)	C5	C7	C8	C10
8	-	1000	1000	1000
10	-	1000	1000	1000
12	1500	1500	1500	1500
14				
15		3000	3000	3000
16		3000	3000	3000
20				
25				
28	3000			
32				
36		6000	6000	6000
38				
40				
50				
63	-	6000	6000	6000
80	-	6000	6000	6000

축운동

예압이 없는 일반적인 조건에서 최대 축운동은 표4와 같습니다.

표4 최대 축운동스크류

볼 직경 Ød (mm)	0.8~1.2	1.588~2.381	2.778~4.762	6.35~7.938
최대 축운동 (mm)	<0.01	<0.02	<0.04	<0.07

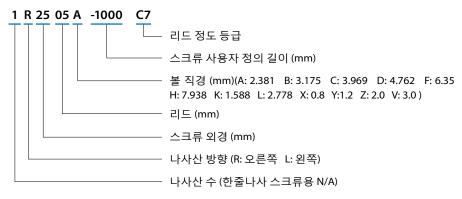

재질 및 경도

PMI 전조 스크류의 표준 자재 및 표면 경도는 표5와 같습니다.

표5

명칭	재질	열처리	경도 (HRC)
전조 스크류	S55C/동일	고주파 경화	58~62
너트	SCM420H/동일	침탄 경화	58~62

전조 스크류 타입 및 치수


단위:*mm*

1 0.8 C7,C8,C10 R 1 1000 R0802Y		스크류크기		리디저디드그	나사산 방향		최대 구름	스크류
8 2 1.2 C7,C8,C10 R 1 1000 R0802Y R0812Z 10 2.5 2 R 1 1000 R1002k R0802Y R0812Z 10 2.381 C7,C8,C10 R 1 1000 R1002k R1002k R1010W 4 2.381 R 1 R1002k R1010W R1002k R110W 10 2 C5,C7,C8,C10 R 1 R1002k R110W 10 2 C5,C7,C8,C10 R 1 R1002k R110W 10 2 C5,C7,C8,C10 R 1 R1004 R120W 10 3 C5,C7,C8,C10 R 2 R1500W 10 3 C5,C7,C8,C10 R 2 R1500W 20 3.175 C7,C8,C10 R 4 R1510W 20 2.778 C7,C8,C10 R 4 R1604A 4 2.381 R 1 R1604A 4 2.381 R 1 R1604A	O.D.	리드	볼 직경	리드 정도 등급	L:왼쪽 / R:오른쪽	나사산 수	길이	번호
10		1	0.8		R	1		R0801X
10 2 1.588	8	2	1.2	C7,C8,C10	R	1	1000	R0802Y
10		2.5	2		R	1		R08I2Z
10 2.381 R 2 2R10100 4 2.381 R 1 1 1500 R1205Z 10 2 C5,C7,C8,C10 R 1 1 3000 R1404A 5 3.175 C5,C7,C8,C10 R 2 2 2R15100 10 3 C5,C7,C8,C10 R 2 2 3000 R1405B 10 3.175 R 2 2 2R15100 20 2.778 C7,C8,C10 R 4 4 2.381 5 3.175 C5,C7,C8,C10 R 2 2 3000 R1405B 4 2.381 R 2 2 R15100 20 2.778 R 2 2 R15100 20 2.778 R 4 2.381 R 1 R1604A 5 3.175 R 2 2 R1605B 4 2.381 R 1 R1605B 5 3.175 R 2 2 R16100 20 2.778 R 2 2 R16100 20 2.778 R 1 3000 R1605B 4 2.381 R 1 R1605B 5 3.175 R 2 R1605B 20 10 4.762 R 2 3000 R2010D 20 3.175 R 2 3000 R2010D 20 3.175 R 1 3000 R2010D 20 3.175 R 2 2 R16100 20 3.175 R 2 3000 R2010D	10	2	1.588	67.69.610	R	1	1000	R1002K
12	10	10	2.381	C7,C8,C10	R	2	1000	2R1010A
12		4	2.381		R	1		R1204A
10 2 12 2.381 R 2 R1210Z R1212/ R14 2.381 C5,C7,C8,C10 R 1 R1405B R150SV R10 3.175 R 2 R1510V R150SV R16 3 R 2 R1510V R150SV R16 3 R 2 R1510V R150SV R16 3 R 2 R1510V R150SV R16 3 R 2 R1510V R16 3 R 4 R1520V R16 3 R 4 R1604A R1605B R16 3 R16 3 R1 1 R1605B R16 3	12	5	2	CE C7 C0 C10	R	1	1500	R1205Z
14	12	10	2	C5,C7,C8,C10	R	1	1500	R1210Z
14		12	2.381		R	2		2R1212A
Table Tabl	1.4	4	2.381	CE C7 C0 C10	R	1	2000	R1404A
10 3 C5,C7,C8,C10 R 2 3000 2R15100 2R1	14	5	3.175	C5,C7,C8,C10	R	1	3000	R1405B
15		5	3		R	1		R1505V
15		10	3	CE C7 C0 C10	R	2		2R1510V
16 3 R 2 2R1516\(\) 20 3.175 \(\) 20 2.778 \(\) 4 2.381 \\ 5 3.175 \\ 10 3.175 \\ 16 3.175 \\ 25,C7,C8,C10 \\ R 4 2.381 \\ 16 3.175 \\ 17 1 16 3.175 \\ 18 1 2 2R1616\(\) 28 1 2R1616\(\) 29 20 3.175 \\ 20 10 4.762 \\ 20 3.175 \\ 2	15	10	3.175	C5,C7,C8,C10	R	2	2000	2R1510B
20 2.778 C7,C8,C10 R 4 4R1520I 4 2.381 R 1 5 3.175 R 2 10 3.175 R 2 16 3.175 R 2 4 2.381 R 1 20 281616I 4 2.381 R 1 20 20 3.175 R 1 5 3.175 R 1 20 10 4.762 R 1 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 20 3.175 R 1 20 20 20 3.175		16	3		R	2	3000	2R1516V
20 2.778 R 4 4R1520I 4 2.381 R 1 R1604A 5 3.175 C5,C7,C8,C10 R 2 10 3.175 R 2 16 3.175 R 2 20 10 4.762 C5,C7,C8,C10 R 1 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 1 20 20 3.175 R 2005B		20	3.175	67.69.610	R	4		4R1520B
16 5 3.175 C5,C7,C8,C10 R 1 3000 R1605B 10 3.175 R 2 2R1610I 16 3.175 R 2 2R1616I 4 2.381 R 1 R2004A 5 3.175 R 1 R2005B 20 10 4.762 R 1 3000 R2010D 20 3.175 R 2 2R2020B		20	2.778	C7,C8,C10	R	4		4R1520L
16		4	2.381		R	1		R1604A
10 3.175 R 2 2R1610I 16 3.175 R 2 2R1616I 4 2.381 R 1 R2004A 5 3.175 R 1 R2005B 20 10 4.762 R 1 3000 R2010D 20 3.175 R 2	16	5	3.175	CE C7 C0 C10	R	1	2000	R1605B
4 2.381 R 1 R2004A 5 3.175 R 1 R2005B 20 10 4.762 R 1 3000 R2010D 20 3.175 R 2 2R2020B	10	10	3.175	C5,C7,C8,C10	R	2	3000	2R1610B
5 3.175 20 10 4.762 20 3.175 C5,C7,C8,C10 R 1 3000 R2010D 20 3.175 R 2		16	3.175		R	2		2R1616B
20 10 4.762 C5,C7,C8,C10 R 1 3000 R2010D 20 3.175 R 2		4	2.381		R	1		R2004A
20 10 4.762 R 1 3000 R2010D 20 3.175 R 2		5	3.175	CF C7 C0 C10	R	1		R2005B
	20	10	4.762	C5,C7,C8,C10	R	1	3000	R2010D
40 2175 67.60.610 D		20	3.175		R	2		2R2020B
40 3.1/5 C/,C8,C10 K 4 4R2040t		40	3.175	C7,C8,C10	R	4		4R2040B

단위:*mm*

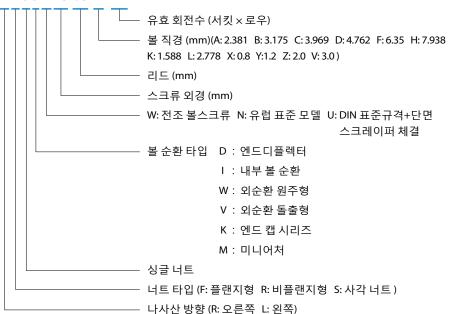
스크류크기 나사산 방향 나사산 방향 O.D. 리드 볼 직경 4 2.381 R 1 5 3.175 R/L 1 5.08 3.175 R/L 1 10 3.175 R 2 10 4.762 R 1 10 6.350 R 1 25 3.175 R 4 25 3.969 R 4	I대 구름 길이 6000	C크류 번호 R2504A R(L)2505B R(L)2515B 2R2510B R2510D
O.D. 리드 볼 직경 L:왼쪽 / R:오른쪽 수 4 2.381 R 1 5 3.175 R/L 1 5.08 3.175 10 3.175 10 4.762 10 6.350 25 3.175 R 1 R 2 R 1 R 1 R 4		R2504A R(L)2505B R(L)2515B 2R2510B
5 3.175 5.08 3.175 10 3.175 10 4.762 10 6.350 25 3.175 R/L 1 R/L 1 R/L 1 R 2 R 2 R 1 R 1	6000	R(L)2505B R(L)2515B 2R2510B
5.08 3.175 10 3.175 10 4.762 10 6.350 25 3.175 R/L 1 R 2 R 1 R 1 R 4	6000	R(L)25I5B 2R2510B
25	6000	2R2510B
25 10 4.762 C5,C7,C8,C10 R 1 10 6.350 R 1 25 3.175 R 4	6000	
10 4.762 R 1 10 6.350 R 1 25 3.175 R 4	0000	R2510D
25 3.175 R 4		1123100
		R2510F
25 3.969 R 4		4R2525B
		4R2525C
5 3.175 C5,C7,C8,C10 R 1	6000	R2805B
6 3.175 R 1	0000	R2806B
5 3.175 R/L 1		R(L)3205B
5.08 3.175 R/L 1		R(L)32I5B
10 3.969 R 1		R3210C
32 10 6.350 C5,C7,C8,C10 R 1	6000	R3210F
20 3.969 R 2		2R3220C
20 6.350 R 2		2R3220F
32 3.969 R 4		4R3232C
32 4.762 R/L 4		4R(L)3232D
36 10 6.350 C5,C7,C8,C10 R 1	6000	R3610F
10 6.350 R 1		R3810F
38 20 6.350 C5,C7,C8,C10 R 2	6000	2R3820F
40 6.350 R 4		4R3840F
5 3.175 R 1		R4005B
40 10 6.350 R 1	6000	R4010F
40 20 6.350 C5,C7,C8,C10 R 2	0000	2R4020F
40 6.350 R 4		4R4040F
10 6.350 R 1		R5010F
50 20 6.350 C5,C7,C8,C10 R 2	6000	2R5020F
50 7.938 R 4		4R5050H
10 6.350 R 1	6000	R6310F
63 20 6.350 C7,C8,C10 R 2	6000	2R6320F
80 10 6.350 C7,C8,C10 R 1	6000	R8010F

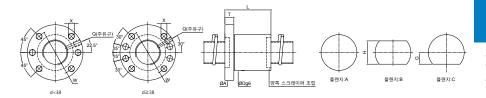
주문 코드

전조 볼스크류 너트

표준 모델

PMI전조볼스크류 유럽 표준 모델

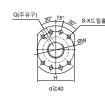

FSDN


선택 모델

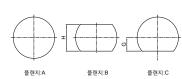
주문 코드

RFSDN2505A4T

단위: *mm*

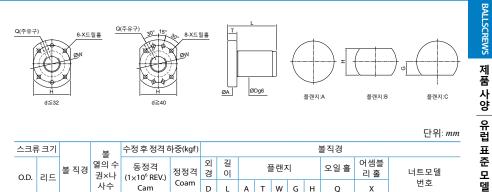

	는 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계															
스크	루크기		볼	수정 후 정격 혀	하중(kgf)								볼직경			
O.D.	리드	볼 직 경	골 열의 수 권x나	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		듵	플랜기	۲ļ		오일홀	어셈블 리 홀	강 성	너트모델
0.5.	- -		사수	Cam	Coam	D	L	Α	Т	W	G	Н	Q	Х	kgf/ μm	번호
	5		4×1	1210	2130	28	39	48	10	38	20	40	M6×1P	5.5	22	FSDN1505V-4.0P
15	10	3	3×1	950	1650	28	47	48	10	38	20	40	M6×1P	5.5	17	FSDN1510V-3.0P
	16		3×1	910	1600	28	64	48	10	38	20	40	M6×1P	5.5	17	FSDN1516V-3.0P
20	5	- 3.175	4×1	1570	3270	36	40	58	10	47	22	44	M6×1P	6.6	28	FSDN2005B-4.0P
20	20	3.173	2×2	1460	3120	36	58	58	10	47	22	44	M6×1P	6.6	28	FSDN2020B-4.0P
	5		5×1	2130	5230	40	46	62	10	51	24	48	M6×1P	6.6	41	FSDN2505B-5.0P
25	10	3.175	4×1	1740	4120	40	60	62	10	51	24	48	M6×1P	6.6	33	FSDN2510B-4.0P
	25		2×2	1610	3900	40	68	62	10	51	24	48	M6×1P	6.6	33	FSDN2525B-4.0P
	5	3.175	6×1	2800	8180	50	53	80	12	65	31	62	M6×1P	9	59	FSDN3205B-6.0P
32	10		5×1	3240	8480	50	73	80	12	65	31	62	M6×1P	9	52	FSDN3210C-5.0P
32	20	3.969	4×1	2600	6630	50	101	80	12	65	31	62	M6×1P	9	42	FSDN3220C-4.0P
	32		2×2	2460	6340	50	84	80	12	65	31	62	M6×1P	9	41	FSDN3232C-4.0P
	10		5×1	6500	15610	63	78	93	14	78	35	70	M8×1P	9	64	FSDN3810F-5.0P
38	20	6.35	4×1	5250	12240	63	107	93	14	78	35	70	M8×1P	9	52	FSDN3820F-4.0P
	40		2×2	4940	11770	63	104	93	14	78	35	70	M8×1P	9	51	FSDN3840F-4.0P

비고: Coam 및 Cam은 각각 수정후 동적 및 정적 하중을 표시하고 계산식은 DIN69051의 표준을 참조바랍니다.


비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가할때 볼과 홈간에 발생하는 탄력변형 원리로 인해 얻어지는 값입 니다. 축방향하중과 이론조건이 상이 할때 이 내용 참조바랍니다.

제품

FSDU


단우	ŀ	mm
----	---	----

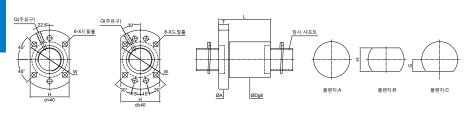
FSDU

스크루	루크기		볼	수정 후 정격 혀	하중(kgf)							볼	직경		·
O.D.	리드	볼 직경	_ອ 열의 수 권×나사	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		푤	플랜지	1		오일 홀	어셈블 리홀	너트모델
	,		수	Cam	Coam	D	L	Α	Т	W	G	Н	Q	Х	번호
	5	- 2	3x1	630	1060	24	31	40	10	32	15	30	M6×1P	4.5	FSDU1205Z-3.0P
12	10	2	3x1	620	1040	24	45	40	10	32	15	30	M6×1P	4.5	FSDU1210Z-3.0P
	20	2.381	2x1	590	1070	24	53	40	10	32	15	30	M6×1P	4.5	FSDU1220A-2.0P
	20	2.778	2x1	560	970	28	53	48	10	38	20	40	M6×1P	5.5	FSDU1520L-2.0P
	5		4x1	1210	2130	28	36	48	10	38	20	40	M6×1P	5.5	FSDU1505V-4.0P
15	10		3x1	950	1650	28	45	48	10	38	20	40	M6×1P	5.5	FSDU1510V-3.0P
	16	3	2x1	620	1040	28	46	48	10	38	20	40	M6×1P	5.5	FSDU1516V-2.0P
	16		3x1	910	1600	28	62	48	10	38	20	40	M6×1P	5.5	FSDU1516V-3.0P
	5		4x1	1570	3270	36	40	58	10	47	22	44	M6×1P	6.6	FSDU2005B-4.0P
20	10	3.175	4x1	1560	3250	36	58	58	10	47	22	44	M6×1P	6.6	FSDU2010B-4.0P
20	20	3.173	2x1	810	1550	36	58	58	10	47	22	44	M6×1P	6.6	FSDU2020B-2.0P
	20		3x1	1180	2430	36	78	58	10	47	22	44	M6×1P	6.6	FSDU2020B-3.0P
	5		4x1	1750	4150	40	40	62	10	51	24	48	M6×1P	6.6	FSDU2505B-4.0P
	10		4x1	1740	4120	40	59	62	10	51	24	48	M6×1P	6.6	FSDU2510B-4.0P
25	20	3.175	2x1	910	1990	40	59	62	12	51	24	48	M6×1P	6.6	FSDU2520B-2.0P
	25	_	2x1	900	1950	40	70	62	12	51	24	48	M6×1P	6.6	FSDU2525B-2.0P
	25		3x1	1290	3040	40	95	62	12	51	24	48	M6×1P	6.6	FSDU2525B-3.0P

비고: Coam 및 Cam은 각각 수정후 동적 및 정적 하중을 표시하고 계산식은 DIN69051의 표준을 참조바랍니다.

비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가할때 볼과 홈간에 발생하는 탄력변형 원리로 인 해 얻어지는 값입 니다. 축방향하중과 이론조건이 상이 할때 이 내용 참조바랍니다.

단우	ŀ	122 122
ᆣᄑ	ŀ	IIIIIII


스크루	루크기		볼	수정 후 정격 혀	하중(kgf)								볼직경		
O.D.	리드	볼 직경	_ 열의 수 권×나	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		를	플랜기	4		오일 홀	어셈블 리 홀	너트모델
	,		사수	Cam	Coam	D	L	Α	Т	W	G	Н	Q	Х	번호
	5	3.175	4x1	1940	5360	50	42	80	12	65	31	62	M6 × 1P	9	FSDU3205B-4.0P
	10		4x1	2660	6710	50	62	80	12	65	31	62	M6 × 1P	9	FSDU3210C-4.0P
32	20	3.969	3x1	2000	4870	50	81	80	12	65	31	62	M6 × 1P	9	FSDU3220C-3.0P
	32	3.909	2x1	1350	3170	50	84	80	13	65	31	62	M6 × 1P	9	FSDU3232C-2.0P
	32		3x1	1980	4920	50	116	80	13	65	31	62	M6 × 1P	9	FSDU3232C-3.0P
	10		4x1	5110	13800	63	67	93	14	78	35	70	$M8 \times 1P$	9	FSDU3810F-4.0P
38	20	6.35	3x1	4030	9020	63	86.4	93	14	78	35	70	M8 × 1P	9	FSDU3820F-3.0P
30	40	0.55	2x1	2730	5890	63	103	93	15	78	35	70	M8 × 1P	9	FSDU3840F-2.0P
	40		3x1	3980	7160	63	143	93	15	78	35	70	M8 × 1P	9	FSDU3840F-3.0P
40	5	3.175	4x1	1760	6260	63	43	93	15	78	35	70	$M8 \times 1P$	9	FSDU4005B-4.0P

비고: Coam 및 Cam은 각각 수정후 동적 및 정적 하중을 표시하고 계산식은 DIN69051의 표준을 참조바랍니다.

비고: 너트 강성 : 위 표와 같이 강성치는 30%하중을 추가할때 볼과 홈간에 발생하는 탄력변형 원리로 인 해 얻어지는 값입 니다. 축방향하중과 이론조건이 상이 할때 이 내용 참조바랍니다.

외부 볼 순환 너트

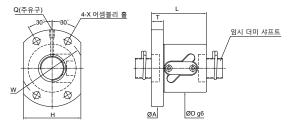
PMI 전조 볼스크류

단위: *mm*

FSIN

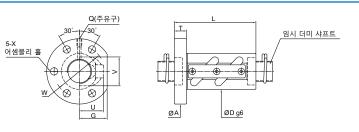
스크루	루크기			수정 후 정격	하중(kgf)								볼직경			
O.D.	리드	볼 직경	볼 열의 수	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		를	플랜.	지		오일 홀	어셈블 리홀	강성	너트모델
	·			Cam	Coam	D	L	Α	Т	W	G	Н	Q	Х	kgf/μm	번호
16	5	3.175	3	1050	2200	28	42	48	10	38	20	40	M6 × 1P	5.5	17	FSIN1605B-3.0P
20	5	3.175	4	1530	3720	36	50	58	12	47	22	44	M6 × 1P	6.5	25	FSIN2005B-4.0P
25	5	3.175	4	1700	4720	40	50	62	12	51	24	48	M6 × 1P	6.5	37	FSIN2505B-4.0P
23	10	4.762	4	2900	6990	40	85	62	12	51	24	48	M6 × 1P	6.5	32	FSIN2510D-4.0P
32	5	3.175	4	1900	6090	50	50	80	12	65	31	62	M6 × 1P	9	50	FSIN3205B-4.0P
32	10	6.35	4	4720	11670	50	80	80	13	65	31	62	M6 × 1P	9	50	FSIN3210F-4.0P
40	5	3.175	4	2090	7670	63	54	93	15	78	35	70	M8 × 1P	9	52	FSIN4005B-4.0P
40	10	6.35	4	5310	14850	03	82	73	13	/0	33	70	IVIO X IP	9	60	FSIN4010F-4.0P
50	10	6.35	4	5890	18780	75	88	110	18	93	42.5	85	M8 × 1P	11	70	FSIN5010F-4.0P

비고: Coam 및 Cam은 각각 수정후 동적 및 정적 하중을 표시하고 계산식은 DIN69051의 표준을 참조바랍니다. 비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가할때 볼과 홈간에 발생하는 탄력변형 원리로 인

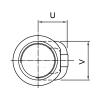

해 얻어지는 값입 니다. 축방향하중과 이론조건이 상이 할때 이 내용 참조바랍니다.

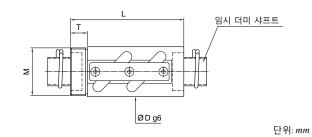
<u>Q(주유구)</u> 30 4X 이센블리 <u>홀</u>	임시 더미 샤프트
Н	ØA ØD g6

다위: *mm*


	한 취. <i>MM</i>														
스크루	루크기			기본 정격 하	중(kgf)							볼	직경		
O.D.	리드	볼 직경	볼 열의수	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		플린	낸지		어셈블 리 홀	오일 홀	강 성	너트모델
0.5.	-1-		열×권	Ca	Co	D	L	Α	Т	W	Н	Х	Q	kgf/ μm	번호
12	4	2.381	2.5x1	285	533	30	40	52	10	40	31	4.5	M6x1P	9	FSWW1204A-2.5P
12	5	2	2.5x1	270	350	26	40	47	10	37	30	4.5	M6x1P	8.2	FSWW1205Z-2.5P
14	4	2.381	3.5x1	500	1100	35	42	57	10	45	40	4.5	M6x1P	15	FSWW1404A-3.5P
14	5	3.175	2.5x1	515	990	40	40	57	10	45	40	4.5	M6x1P	11	FSWW1405B-2.5P
15	10	3.175	2.5x1	440	680	34	55	57	10	45	34	5.5	M6x1P	12	FSWW1510B-2.5P
	4	2.381	3.5x1	610	1470	34	42	57	11	45	34	5.5	M6x1P	17	FSWW1604A-3.5P
16	5	3.175	2.5x1	550	1140	40	41	63	11	51	42	5.5	M6x1P	13	FSWW1605B-2.5P
	10	3.175	2.5x1	550	990	40	56	63	11	51	42	5.5	M6x1P	13	FSWW1610B-2.5P
	4	2.381	2.5x2	1140	3120	40	56	67	11	55	52	5.5	M6x1P	30	FSWW2004A-5.0P
20	5	3.175	2.5x1	625	1450	44	41	67	10	55	52	5.5	M6x1P	15	FSWW2005B-2.5P
	10	4.762	2.5x1	1100	2200	52	61	82	12	67	64	6.6	M6x1P	16	FSWW2010D-2.5P
	5	3.175	2.5x2	1120	3710	50	56	73	11	61	56	6.6	M6x1P	37	FSWW2505B-5.0P
25	10	4.762	2.5x1	1270	2780	58	65	85	15	71	64	6.6	M6x1P	20	FSWW2510D-2.5P
	10	6.35	2.5x2	3200	7170	60	97	96	15	78	72	9	М6х1Р	40	FSWW2510F-5.0P

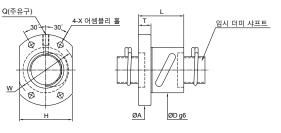
FSWW


			1-	-1			DA		2.	<i>y</i> 90				단위: <i>mm</i>	
스크루	루크기			기본 정격 하	중(kgf)							볼직	경		
O.D.	리드	볼 직경	볼 열의수	동정격 (1×10° REV.)	정정격	외 경	길 이		플립	밴지		어셈블 리홀	오일 홀	강 성	너트모델
0.5.	-1-		열×권	Ca	Co	D	L	Α	Т	w	Н	Х	Q	kgf/ μm	번호
			1.5x2	910	2470		46							21	FSWW2805B-3.0P
28	5	3.175	2.5x1	780	2060	55	42	83	12	69	62	6.6	M8x1P	18	FSWW2805B-2.5P
20		3.173	2.5x2	1410	4120	33	56	03	12	0)	02	0.0	WIOXII	33	FSWW2805B-5.0P
			3.5x1	1040 2880 47			24	FSWW2805B-3.5P							
32	5	3.175	2.5x2	1540	4720	58	57	85	12	71	64	6.6	M8x1P	41	FSWW3205B-5.0P
32	10	6.35	2.5x2	3130	9410	67	97	103	15	85	78	9	M6x1P	49	FSWW3210F-5.0P
			1.5x2	2170	6480		81							30	FSWW3610F-3.0P
36	10	6.35	2.5x2	3370	10800	70	99	110	17	90	82	11	M6x1P	29	FSWW3610F-5.0P
			3.5x1	2480	7560		81							35	FSWW3610F-3.5P
40	5	3.175	2.5x2	1830	5940	67	60	101	15	83	78	9	M8x1P	60	FSWW4005B-5.0P
40	10	6.35	2.5x2	3520	12000	76	100	116	17	96	88	11	M6x1P	59	FSWW4010F-5.0P
50	10	6.35	2.5x2	3900	15000	88	101	128	18	108	100	11	M6x1P	72	FSWW5010F-5.0P
63	10	6.35	2.5x2	4770	18660	108	105	154	22	130	116	14	M8x1P	75	FSWW6310F-5.0P
80	10	6.35	2.5x2	5340	23750	130	105	176	22	152	132	14	M8x1P	90	FSWW8010F-5.0P


비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가하였을때 볼과 홈 간에 발생하는 탄력변형 원리로 인해 얻어지는 값입니다. 축방향 하중과 이론 조건이 상이할 경우 위 내용을 참고하기 바랍니다.

																		단위: <i>mm</i>
스	크류	크기		볼 열의		격 하중 gf)									볼직경			
0.	D E	리드	볼 직 경	^{르-1} 수 열×	동정격 (1×10°	정정격	외 경	길 이		플립	밴지			귀튜 크	어셈블 리홀	오일홀	강 성	너트모델
	J. -	-1-		권	REV.) Ca	Со	D	L	Α	Т	W	G	U	٧	Х	Q	kgf/ μm	번호
1	4	4	2.381	3.5x1	500	1100	25	42	55	10	40	19	19	21	4.5	M6x1P	15	FSVW1404A-3.5P
'	4	5	3.175	2.5x1	515	990	30	43	50	10	40	22	19	21	4.5	М6х1Р	11	FSVW1405B-2.5P
1	6	5	3.175	2.5x2	1000	2280	31	60	54	12	41	24	20	23	5.5	M6x1P	23	FSVW1605B-5.0P
2	0	5	3.175	2.5x2	1130	2900	40	60	60	12	50	28	23	27	4.5	M6x1P	28	FSVW2005B-5.0P
_		10	4.762	2.5x1	1100	2200	40	60	67	12	53	30	27	30	6.6	M6x1P	16	FSVW2010D-2.5P
		5	3.175	2.5x1	720	1830	42	45	71	12	57	28	25	32	6.6	M6x1P	18	FSVW2505B-2.5P
2	5	10	4.762	3.5x1	1690	3900	45	75	72	16	58	34	29	34	6.6	M6x1P	27	FSVW2510D-3.5P
		10	6.35	2.5x1	1720	3590	44	68	79	15	62	34	30	37	9	M6x1P	21	FSVW2510F-2.5P
				1.5x2	910	2470		50									21	FSVW2805B-3.0P
2	Ω	5	3.175	2.5x1	780	2060	44	45	70	12	56	28	28	35	6.6	M6x1P	18	FSVW2805B-2.5P
_		,	3.173	2.5x2	1410	4120	77	60	70	12	50	20	20	33	0.0	WIOXII	33	FSVW2805B-5.0P
				3.5x1	1040	2880		50									24	FSVW2805B-3.5P
3	2	5	3.175	2.5x2	1540	4720	50	60	76	12	63	36	30	39	6.6	M6x1P	41	FSVW3205B-5.0P
3		10	6.35	2.5x2	3130	9410	55	101	97	18	75	39	37	44	11	M6x1P	49	FSVW3210F-5.0P
3	6	10	6.35	1.5x2	2170	6480	60	82	105	18	80	42	40	49	11	M6x1P	30	FSVW3610F-3.0P
4	0	5	3.175	3.5x1	1350	4160	58	55	92	16	72	42	34	46	9	M8x1P	43	FSVW4005B-3.5P
	_	10	6.35	3.5x1	2590	8400	65	82	106	18	85	44	42	52	11	PT1/8"	45	FSVW4010F-3.5P
5	0	10	6.35	3.5x2	4940	21000	80	125	138	22	110	52	48	62	18	M6x1P	98	FSVW5010F-7.0P
6	3	10	6.35	2.5x2	4770	18660	108	105	154	22	130	44	53	76	14	M8x1P	75	FSVW6310F-5.0P
8	0	10	6.35	2.5x2	5340	23750	130	105	176	22	152	48	64	91	14	M8x1P	90	FSVW8010F-5.0P

제품 사양 외부 볼 순환 너트



RSVW

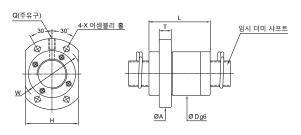
스=	류크기			기본 정격 혀	i 중(kgf)					볼건	김경		
0.0	. 리드	볼 직경	볼 열의 수 열×권	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이	플랜지		복귀	튜브	강성	너트모델
0.0	. - -		월×전	Ca	Co	D	L	М	Т	U	٧	kgf/μm	번호
14	4	2.381	3.5×1	500	1100	25	42	M24×1.0P	10	19	21	15	RSVW1404A-3.5P
14	5	3.175	2.5×1	515	990	30	43	M26×1.5P	10	19	21	11	RSVW1405B-2.5P
20	5	3.175	2.5×1	625	1450	40	43	M36×1.5P	12	23	27	15	RSVW2005B-2.5P
	5	3.175	2.5×1	720	1830	42	48	M40×1.5P	15	28	22	18	RSVW2505B-2.5P
25		3.1/5	2.5×2	1120	3710	42	63	WI40×1.5P	15	28	32	37	RSVW2505B-5.0P
25	10	6.350	2.5×1	1720	3590	44	68	M42×1.5P	15	34	27	21	RSVW2510F-2.5P
	10	0.330	2.5×2	3200	7170	44	98	W42X1.3P	15	34	3/	40	RSVW2510F-5.0P
32	10	6.350	2.5×1	1930	4680	55	72	M50×1.5P	18	27	44	25	RSVW3210F-2.5P
32	10	0.330	2.5×2	3130	9410	22	101	MISUX 1.5P	10	37	44	49	RSVW3210F-5.0P
40	10	6.350	3.5×2	4450	16800	65	128	M60×2.0P	25	44	52	81	RSVW4010F-7.0P
50	10	6.350	3.5×2	4940	21000	80	143	M75×2.0P	40	48	62	98	RSVW5010F-7.0P

비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가하였을때 볼과 홈 간에 발생하는 탄력변형 원리로 인해 얻어지는 값입니다. 축방향 하중과 이론 조건이 상이할 경우 위 내용을 참고하기 바랍니다.

단위: *mm*

스크루	루크기			기본 정격 하	중(kgf)							볼	직경		
O.D.	리드	볼 직경	볼 열의 수	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		플립	낸지		어셈블 리홀	오일 홀	강성	너트모델
0.0.	니프		열 × 권	Ca	Co	D	L	Α	Т	W	н	Х	Q	kgf/ μm	번호
12	5	2.000	2.5×1	270	350	26	40	47	10	37	30	4.5	$M6 \times 1P$	8.2	FSBW1205Z-2.5P
14	4	2.381	3.5 × 1	500	1100	31	40	50	10	40	37	4.5	M6 × 1P	15	FSBW1404A-3.5P
14	5	3.175	2.5 × 1	515	990	32	40	50	10	40	38	4.5	M6 × 1P	11	FSBW1405B-2.5P
16	5	3.175	2.5 × 1	570	1130	34	40	54	10	44	40	4.5	M6 × 1P	13	FSBW1605B-2.5P
20	4	2.381	2.5 × 1	415	850	40	41	59	10	50	46	4.5	$M6 \times 1P$	14	FSBW2004A-2.5P
20	5	3.175	2.5 × 1	620	1450	40	40	59	10	50	46	4.5	M6 × 1P	16	FSBW2005B-2.5P
25	4	2.381	2.5 × 1	450	980	43	41	67	10	55	50	4.5	M6 × 1P	17	FSBW2504A-2.5P
25	5	3.175	2.5 × 1	720	1830	43	40	67	10	55	50	5.5	M6 × 1P	18	FSBW2505B-2.5P

SSVW


PMI 전조 볼스크류 엔드캡시리즈

제품사양 외부볼순환너트

4-JxK이션블리 홀 F G(주유구)M6	SX1P
G H U	

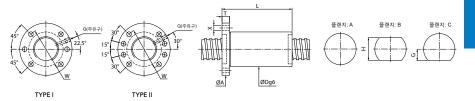
																		_ II
스크루	루크기		н	기본 정 ² (kg								볼건	김경					
0.0	71.5	볼 직 경	볼 열의 수 열 × 권	동정격	정정	외 경	폭	높 이		어	셈블리	의 홀	오 달 위	일홀 치	참조 면놈		강도	너트모델
O.D.	리드		될 시 전	(1×10 ⁶ REV.)Ca	격 Co	L	w	Н	Α	В	С	J×K	Е	F	G	U	kgf/ μm	번호
14	4	2.381	3.5×1	500	1110	35	34	13	22	26	6.5	M4×7	6	2	6	18	15	SSVW1404A-3.5P
14	5	3.175	2.5×1	515	990	35	34	13	22	26	6.5	M4×7	6	2	6	18	11	SSVW1405B-2.5P
16	5	3.175	2.5×1	590	1210	35	42	16	22	32	6.5	M5×8	6	2	8	21	13	SSVW1605B-2.5P
20	5	3.175	2.5×1	625	1450	35	48	17	22	35	6.5	M6×10	6	3	9.15	22	15	SSVW2005B-2.5P
20	10	4.762	2.5×1	1100	2220	58	48	18	35	35	11.5	M6×10	10	2	9.5	25	16	SSVW2010D-2.5P
25	5	3.175	2.5×1	720	1830	35	60	20	22	40	6.5	M8×12	7	5	9.5	25	18	SSVW2505B-2.5P
23	10	6.350	2.5×2	3240	7170	94	60	23	60	40	17	M8×12	10	-	10	30	40	SSVW2510F-5.0P
28	6	3.175	2.5×2	1380	4140	67	60	22	40	40	13.5	M8×12	8	5	10	27	39	SSVW2806B-5.0P
32	10	6.350	2.5×1	1930	4680	64	70	26	45	50	9.5	M8×12	10		12	36	25	SSVW3210F-2.5P
32	10	0.330	2.5×2	3130	9410	94	70	20	60	50	17	IVIOX I Z	10	-	12	30	49	SSVW3210F-5.0P

비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가하였을때 볼과 홈 간에 발생하는 탄력변형 원리로 인해 얻어지는 값입니다. 축방향 하중과 이론 조건이 상이할 경우 위 내용을 참고하기 바랍니다.

단위: *mm*

															인귀: <i>mm</i>
스크	류크기		볼	기본 정격 혀	卡중(kgf)							볼직	경		
O.D.	리드	볼 직 경	_글 열의 수 권x나	동정격 (1×10 ⁶ REV.)	정정격	외 경	길 이		플	밴지		어셈블 리홀	오일 홀	강성	너트모델
0.0.	-1-		사수	Ca	Co	D	L	Α	Т	w	Н	Х	Q	kgf/ μm	번호
12	12	2.381	1.8x2	410	850	25	31	40	6	32	21	4.5	M4x0.7P	13	FSKW1212A-3.6P
15	10	3.175	2.8×2	1000	2570	34	44	57	10	45	40	5.5	M6×1P	26	FSKW1510B-5.6P
13	20	3.175	1.8×1	380	830	34	45	57	10	45	40	5.5	M6×1P	26	FSKW1520B-1.8P
16	16	3.175	1.8×1	330	640	32	38	53	10	42	38	4.5	M6×1P	9	FSKW1616B-1.8P
	20	3.175	1.8×2	780	2280	39	52	62	10	50	46	5.5	M6×1P	21	FSKW2020B-3.6P
20	40	3.175	0.8×2	390	1010	38	41	58	10	40	10	5.5	M6×1P	14	FSKW2040B-1.6P
	40	3.173	1.8×1	430	1140	30	81	30	10	40	40	3.3	MOXIF	16	FSKW2040B-1.8P
25	25	3.969	1.8×2	1230	3570	47	62	74	12	60	56	6.6	M6×1P	27	FSKW2525C-3.6P
23	23	3.909	1.8×4	2230	7140	47	02	/4	12	00	30	0.0	MOXIF	52	FSKW2525C-7.2P
32	32	4.762	1.8×2	1760	5500	58	70	92	15	74	60	9	M6×1P	33	FSKW3232D-3.6P
32	32	4.702	1.8×4	3200	11000	30	70	92	13	/4	00	9	MOXIF	65	FSKW3232D-7.2P
40	40	6.350	1.8×2	2870	9170	73	O.F.	114	17	02	01	11	M6×1P	42	FSKW4040F-3.6P
40	40	0.550	1.8×4	5220	18340	/3	93	114	17	93	04	"	MOXIF	81	FSKW4040F-7.2P
50	50	7.938	1.8x4	7890	26330	90	122	135	20	112	104	14	M6x1P	103	FSKW5050H-7.2P

제품


제품사양 내부볼순환너트

FSIW

임시 더미 샤프트 Q(주유구) 플랜지:B

	ecns	•			e emio													단위: <i>mm</i>
스크루	루크기			기본 정 [.] (kg										볼직	경			
O.D.	리드	볼 직 경	볼 열의 수	동정격 (1×10 ⁶	정정 격	외 경	길 이		플	플랜지	1		어심	셈블리	홀	오일 홀	강성	너트모델
O.D.	디드			REV.)Ca	Co	D	L	Α	Т	w	G	Н	Х	Υ	Z	Q	kgf/ μm	번호
14	4	2.381	4	400	890	26	47	46	10	36	20	40	4.5	8	4.5	M6x1P	18	FSIW1404A-4.0P
16	4	2.381	3	320	760	28	42	48.5	10	39	20	40	4.5	8	4.5	M6x1P	13	FSIW1604A-3.0P
10	5	3.175	3	570	1030	30	42	49	10	39	20	40	4.5	8	4.5	M6x1P	17	FSIW1605B-3.0P
20	4	2.381	4	450	1270	34	44	60	12	48	22	44	5.5	9.5	5.5	M6x1P	19	FSIW2004A-4.0P
20	5	3.175	4	830	1890	34	53	57	12	45	20	40	5.5	9.5	5.5	M6x1P	21	FSIW2005B-4.0P
	4	2.381	3	380	1195	40	40	63	12	51	22	44	5.5	9.5	5.5	M8x1P	17	FSIW2504A-3.0P
25	5	3.175	4	940	2420	40	53	63.5	12	51	22	44	5.5	9.5	5.5	M8x1P	26	FSIW2505B-4.0P
	10	4.762	4	1550	3540	42	85	68.5	15	55	26	52	6.6	11	6.5	M8x1P	28	FSIW2510D-4.0P
28	6	3.175	3	770	2180	43	50	68	12	55	26	52	6.6	11	6.5	M8x1P	22	FSIW2806B-3.0P
32	5	3.175	4	1050	3390	48	53	73.5	12	60	30	60	6.6	11	6.5	M8x1P	32	FSIW3205B-4.0P
32	10	6.35	4	2510	5880	54	90	88	16	70	34	68	9	14	8.5	M8x1P	34	FSIW3210F-4.0P
36	10	6.35	4	2570	6870	58	89	98	18	77	36	72	11	17.5	11	M8x1P	39	FSIW3610F-4.0P
40	5	3.175	4	1180	4390	55	56	88.5	16	72	29	58	9	14	8.5	M8x1P	38	FSIW4005B-4.0P
40	10	6.35	4	2630	7860	64	93	106	18	84	43	86	11	17.5	11	M8x1P	41	FSIW4010F-4.0P
50	10	6.35	4	2770	10290	74	93	116	18	94	42	84	11	17.5	11	M8x1P	50	FSIW5010F-4.0P
63	10	6.35	4	3760	13700	85	98	132	22	107	48	96	14	20	13	M8x1P	60	FSIW6310F-4.0P
80	10	6.35	4	4130	17660	105	98	151	22	127	57	114	14	20	13	M8x1P	73	FSIW8010F-4.0P

비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가하였을때 볼과 홈 간에 발생하는 탄력변형 원리로 인해 얻어지는 값입니다. 축방향 하중과 이론 조건이 상이할 경우 위 내용을 참고하기 바랍니다.

단위	ŀ	mm
----	---	----

스크류	루크기		볼		정격 하 kgf)									볼직경			
O.D.	리드	볼 직 경	열의 수 권×나	동정격 (1×10°	정정격	외 경	길 이			플	랜지			오일 홀	어셈블 리홀	강 성	너트모델
0.0.	-1-		사수	REV.) Cam	Coam	D	L	Α	Т	W	G	Н	TYPE	Q	Х	kgf/ μm	번호
12	4	2.381	3×1	410	990	24	28	44	10	34	16	32	ı	M6x1P	4.5	13	FSDW1204A-3.0P
	4	2.381	3×1	460	1210	26	28	16	10	36	17	3/1		M6x1P	4.5	14	FSDW1404A-3.0P
14	~	2.301	4×1	590	1610	20	32	40	10	30	17	J4	'	MOXII	4.5	18	FSDW1404A-4.0P
	5	3.175	3×1	550	1260	29	32	51	10	36	16	32	-1	M6x1P	4.5	14	FSDW1405B-3.0P
15	10	3.175	3×1	560	1340	29	47	51	10	39	19	38	ı	M6x1P	5.5	15	FSDW1510B-3.0P
13	20	3.175	2×1	370	900	29	58	51	10	39	19	38	ı	M6x1P	5.5	10	FSDW1520B-2.0P
	5	3.175	3×1	600	1460	29	35	51	10	39	19	38	-1	M6x1P	5.5	16	FSDW1605B-3.0P
16	10	3.175	3×1	580	1440	29	50	51	10	39	19	38	ı	M6x1P	5.5	15	FSDW1610B-3.0P
	16	3.175	2×1	400	950	29	51	51	10	39	19	38	ı	M6x1P	5.5	11	FSDW1616B-2.0P
	4	2.381	3×1	520	1660	32	28	54	12	42	19	38	-1	M6x1P	5.5	18	FSDW2004A-3.0P
	5	3.175	3×1	670	1860	36	35	62	12	49	24	48	-1	M6x1P	6.6	19	FSDW2005B-3.0P
20	10	4.762	3×1	1320	3390	40	52	62	12	51	24	48	-1	M6x1P	6.6	21	FSDW2010D-3.0P
	20	3.175	2X1	450	1200	36	56	62	12	49	24	48	-1	M6x1P	6.6	13	FSDW2020B-2.0P
	40	3.175	1x2	610	1290	36	56	62	12	49	24	48	-1	M6x1P	6.6	11	FSDW2040B-1.6P
	4	2.381	3×1	580	2120	37	28	62	12	49	22	44	I	M6x1P	6.6	21	FSDW2504A-3.0P
	5	3.175	3×1	740	2350	40	36	62	12	51	24	48	I	M6x1P	6.6	21	FSDW2505B-3.0P
25	10	4.762	4×1	1920	5700	45	63	65	15	54	25.5	51	ı	M6x1P	6.6	32	FSDW2510D-4.0P
	10	6.35	5×1	3380	9550	51	78	84	16	67	32	64	ı	M6x1P	9	42	FSDW2510F-5.0P
	25	3.969	2×1	780	2260	43	71	64	12	51	24	48	ı	M6x1P	6.6	16	FSDW2525C-2.0P
28	5	3.175	5×1	1240	4530	43	48	65	12	51	24	48	ı	M8x1P	6.6	38	FSDW2805B-5.0P
	5	3.175	4x1	1080	4130	50	41	87	16	72	34.5	69	ı	M8x1P	9	34	FSDW3205B-4.0P
32	10	6.35	5x1	3820	12030	57	78	87	16	72	34.5	69	ı	M8x1P	9	50	FSDW3210F-5.0P
	32	4.762	2x1	1100	3420	53	90	87	16	72	34.5	69	I	M8x1P	9	20	FSDW3232D-2.0P

볼 직경 열의 수

열×권

스크류 크기

O.D. 리드

플랜지: A

FSDW

플랜지: C ØDg6 TYPE I TYPE II

																		단위: <i>mm</i>
	스크루	루크기		볼		정격 하 kgf)								喜	·직경			
	O.D.	71.5	볼 직 경	열의 수 권×나	동정격 (1×10°		외 경	길 이			플	랜지			오일홀	어셈블 리홀	강 성	너트모델
	O.D.	리드		사수	REV.) Cam	Coam	D	L	А	Т	w	G	Н	TYPE	Q	х	kgf/ μm	번호
	26	10	C 25	3×1	2560	7970	61	58	91	10	76	24	C 0		MC1D	9	52	FSDW3610F-3.0P
	36	10	6.35	5×1	3970	13750	61	78	91	18	76	34	80	II	M6x1P	9	55	FSDW3610F-5.0P
I		5	3.175	4×1	1180	5200	60	42	91	18	76	34	68	Ш	M8x1P	9	40	FSDW4005B-4.0P
ı	40	10	6.35	5×1	4290	15290	65	78	95	18	80	36	72	II	M8x1P	9	59	FSDW4010F-5.0P
ı	40	20	6.25	4×1	3480	11990	6 5	110	00	10	00	27	74		MO 1D	1.1	48	FSDW4020F-4.0P
ı		40	6.35	2×1	1810	5770	65	110	98	18	83	3/	/4	II	M8x1P	11	25	FSDW4040F-2.0P
	50	10	6.35	5×1	4780	19360	75	78	118	18	100	46	92	II	M8x1P	11	70	FSDW5010F-5.0P
ı	63	10	6.35	5×1	5230	24240	00	84	125	22	115	۲0	110		M01D	1.4	84	FSDW6310F-5.0P
ı	05	20	6.35	5×1	5320	24930		130	-135	22	115	50	110	II	M8x1P	14	137	FSDW6320F-5.0P
	80	10	6.35	5×1	5840	31540	106	80	165	25	145	65	130	II	M8x1P	14	101	FSDW8010F-5.0P

비고: 너트 강성: 위 표와 같이 강성치는 30%하중을 추가하였을때 볼과 홈 간에 발생하는 탄력변형 원리로 인해 얻어지는 값입니다. 축방향 하중과 이론 조건이 상이할 경우 위 내용을 참고하기 바랍니다.

기본 정격 하중(kgf)

정정격

동정격

 $(1 \times 10^6 \text{ REV.})$

	PCD=ØW	1-		-1
30°- -30°	4-ØX Thru	I,		
	,	In		와이퍼 양쪽 엔드
	1 1	447	G]/
		-11 l i	A	1
15 (¥ N)	-	-1-1-1	Ψ_{\oplus}	
1/ /////	Щ_	-	· 🐠	Щ
124-2		[F]
	1			임시 샤프트
Н	,	ØA A	ØDg6	
-		_		

·직경	
어셈블리 홀	너트모델
Х	번호
3.4	FSMW00801X-2 5P

볼직경

플랜지

단위: *mm*

L A T W H Χ 0.8 2.5x1 66 140 14 16 27 4 21 18 3.4 2 1.2 2.5x1 100 190 16 26 29 4 23 20 3.4 FSMW00802Y-2.5P 2.5 2 2.5x1 260 370 18 26 29 4 25 20 FSMW008I2Z-2.5P 28 35 5 27 22 1.588 2.5x1 220 370 18 4.5 FSMW01002K-2.5P

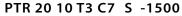
외경 길이

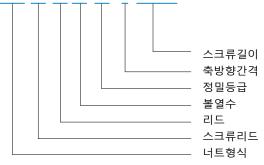
자동화산업 전용

제품특성

응용성능

끝단 열가공처리 안된 스크류 양단 중심홀은 보류하여 고객소요에 맞게 가공이 가능합니다.

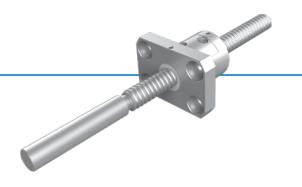

납기단축


끝단 가공안된 볼스크류를 표준재고로 사용가능합니다.

저렴한 가격

정밀등급은 C5혹은 C7급의 축간력을 설정하여 대량생산하여 원가절감되여 가격은 저렵합니다.

PMI사양


너트형식 PPR: FSMM (미니어처)

PTR:FSDM(엔드 디플렉터 시리즈)

볼열수 PPR (미니어처)

A1: 1.5×1 열 / B1: 2.5×1 열 PTR(엔드 디플렉터 시리즈)

T2: 2 열 / T3: 3 열

단위:mm

축방향간격	Z	Т	S	N
정밀등급	0 (예압)	0.005 이하	0.010 이하	0.030 이하
C5	C5Z	C5T	-	-
C 7	-	-	C7S	C7N

PPR 미니추어 너트 특성

공간절약

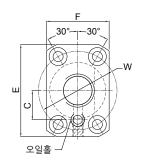
특수외순환방식으로 설계하여 너트 사이즈와 내순환방식과 같은이 작고 공간절약됩니다.

순환방식

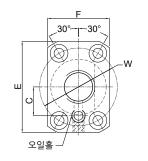
3D의 S형회신설계 방식으로 볼순환에 속도와 부드러움의 효과로 마모를 최소화하여 수명연 장 효과를 봅니다.

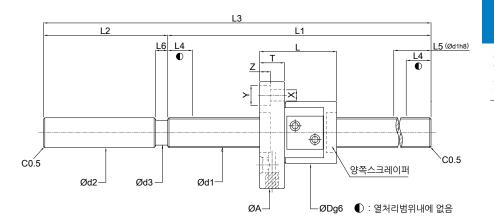
PTR 엔드 디플렉터 너트 특징

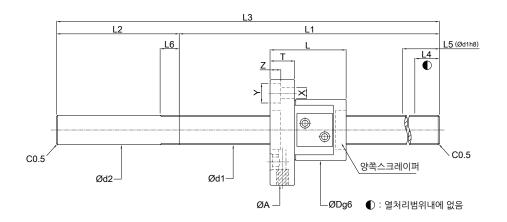
공간절약


너트길이는 단축되여 외경사이는 20%~25% 감소하여 공간절약된 설계에 장착이 가능합니다.

순환방식


재료와 접점경로의 구조설계로 볼순환시 충돌 및 진동을 최소화하여 소음값을감소시킬 수 있습니다. 제품 사양 자동화산업 전용


TYPE I

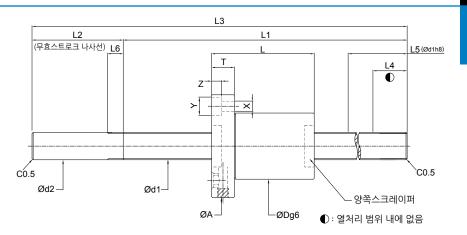

PPR 미니추어 너트 cs

TYPE II

단위: *mm*

Hot	스크류	루외경	A +1 F1 A		하중(Kgf)			축사	이즈			축	사0	I즈	너.	E			플린	기			오일	일홀		나사홀	
사양	외경 d1	리드	순환턴수	동정격하중 Ca	정정격하중 Co	L1	L2	L3	L4	L5	L6	d2	2	d3	Dg6	L	Α	Т	W	Е	F	TYPE	С	Q	х	Y	Z
PPR0802B1C5T-0220	8	2	2.5 × 1	190	290	160	60	220	10	50	3	10)	6.5	20	25	40	6	30	36	25	I	-	-	4.5	8	4.4
PPR1202B1C5T-0220 PPR1202B1C5T-0300	12	2	2.5 × 1	240	450	160 240	60	220 300	10 15		3	12	2	-	25	31	45	10	35	41	28	II	13	M6	4.5	8	4.4

PTR 연드캡터트


단위: *mm*

	스크	류외경	순환	수정 후 정격	력 하중(Kgf)		축시	 이즈			축시	·이즈		너!	트			플랜지			오일	일홀		나사홀	
사양	외경 d1	리드	턴수	동정격하중 Cam	정정격하중 Coam	L1	L2	L3	L4	L5	_5 L	.6 d	12	Dg6	L	Α	Т	W	E	F	С	Q	Х	Υ	Z
PTR1205T3C5T-0300 PTR1205T3C5T-0450	12	5	3	610	1190	240 390	60	300 450	10 15	15 15		7 1	2	30	32	50	10	40	45	32	15	M6	4.5	8	4.
PTR1210T3C5T-0300 PTR1210T3C5T-0450	12	10	3	590	1160	240 390	60	300 450	10 15	15 15		7 1	2	30	45	50	10	40	45	32	15	M6	4.5	8	4
PTR1220T2C5T-0450 PTR1220T2C5T-0600	12	20	2	390	770	390 540	60	450 600	15 15	15 15		7 1	2	30	54	50	12	40	45	32	15	M6	4.5	8	4
PTR1505T3C5T-0300 PTR1505T3C5T-0450 PTR1505T3C5T-0600 PTR1505T3C5T-0750 PTR1505T3C5T-0900	15	5	3	850	1640	240 390 540 690 840	60	300 450 600 750 900	10 10 10 15 15	15	50	7 1	5	34	35	55	11	45	50	34	18	M6	5.5	9.5	5
PTR1510T3C5T-0300 PTR1510T3C5T-0450 PTR1510T3C5T-0600 PTR1510T3C5T-0750 PTR1510T3C5T-0900 PTR1510T3C5T-1100	15	10	3	840	1610	240 390 540 690 840 1040	60	300 450 600 750 900 1100	10 10 10 15 15	15	50 50 50 50 50	7 1	5	34	47	55	11	45	50	34	18	M6	5.5	9.5	5
PTR1520T2C5T-0450 PTR1520T2C5T-0600 PTR1520T2C5T-0750 PTR1520T2C5T-0900 PTR1520T2C5T-1000 PTR1520T2C5T-1100 PTR1520T2C5T-1300	15	20	2	560	1050	390 540 690 840 940 1040 1240	60	450 600 750 900 1000 1100 1300	15 15 15 15 15 15	15 15	50 50 50 00 00 00	7 1	5	34	47	55	11	45	50	34	18	M6	5.5	9.5	5
PTR2005T3C5T-0400 PTR2005T3C5T-0600 PTR2005T3C5T-0800 PTR2005T3C5T-1000	20	5	3	1000	2240	320 520 720 920	80	400 600 800 1000	15 15 15 15	20 20 20 20	00	7 2	:0	44	35	67	11	55	60	44	22	M6	5.5	9.5	5
PTR2010T3C5T-0600 PTR2010T3C5T-0800 PTR2010T3C5T-1000 PTR2010T3C5T-1300 PTR2010T3C5T-1500	20	10	3	1530	3280	515 715 915 1215 1415	85	600 800 1000 1300 1500	15 15 15 15 15	20 20 20 20 20 20	00 00 00	8 2	:0	46	52	74	13	59	66	46	24	M6	6.6	11	6

비고: Coam 및 Cam은 ISO-3408-5에 따라 계산 수정한 동정격 및 정정격 허용하중을 나타냅니다.

제품

PTR 앤드캡너트

단위: *mm*

	스크	류외경	순환	수정 후 정	격 하중(Kgf)		축사	이즈		켴	<u></u> 낚사이2		너.	트			플랜지			오일	일홀		나사홀	
사양	외경 d1	리드	턴수	동정격하중 Cam	정정격하중 Coam	L1	L2	L3	L4	L5	L6	d2	Dg6	L	Α	Т	W	E	F	C	Q	х	Y	Z
PTR1205T3C7S-0300	12	5	3	420	720	240	60	300	15	180	7	12	30	32	50	10	40	45	32	15	M6	4.5	8	4.4
PTR1205T3C7S-0450	12	3	3	420	720	390	00	450	13	100	,	12	30	32	30	10	40	43	32	13	IVIO	4.3	0	4.4
PTR1210T3C7S-0600	12	10	3	420	720	540	60	600	15	180	7	12	30	45	50	10	40	45	32	15	M6	4.5	8	4.4
PTR1220T2C7S-0600	12	20	2	290	460	540	60	600	15	180	7	12	30	54	50	12	40	45	32	15	M6	4.5	8	4.4
PTR1505T3C7S-0600	15	5	3	750	1360	540	60	600	15	230	7	15	34	35	55	11	45	50	34	18	M6	5.5	9.5	5.4
PTR1510T3C7S-0450						390		450																
PTR1510T3C7S-0600						540		600																
PTR1510T3C7S-0750						690		750																
PTR1510T3C7S-0900	15	10	3	750	1360	840	60	900	15	230	7	15	34	47	55	10	45	50	34	18	M6	5.5	9.5	5.4
PTR1510T3C7S-1000						940		1000																
PTR1510T3C7S-1100						1040		1100																
PTR1510T3C7S-1300						1240		1300																
PTR1520T2C7S-0600						540		600																
PTR1520T2C7S-0750						690		750																
PTR1520T2C7S-0900	15	20	2	510	870	840	60	900	15	230	7	15	34	58	55	12	45	50	34	18	M6	5.5	9.5	5.4
PTR1520T2C7S-1000			_	3.0	0, 0	940		1000	.5	250	•		٥.	50	33		.5	50	٥.	.0		5.5	7.5	511
PTR1520T2C7S-1100						1040		1100																
PTR1520T2C7S-1300						1240		1300																
PTR2005T3C7S-0600	20	5	3	910	1930	520	80	600	15	230	7	20	44	35	67	11	55	60	44	22	M6	5.5	9.5	5.4
PTR2010T3C7S-0600						515		600																
PTR2010T3C7S-1000	20	10	3	1210	2380	915	85	1000	15	230	8	20	46	52	74	13	59	66	46	24	M6	6.6	11	6.5
PTR2010T3C7S-1500						1415		1500																

비고: Cam와 Coam은 수정후의 동정격하중을 나타내며 계산방법은 ISO-3408-5기준에 의한 것입니다.

볼스크류 사용문제 분석

머리말

[볼스크류]는 CNC공작기계 기존 전통적인 [aikemu]스크류를 대신하였으며 기존 제품과 다르게 정도 및 수명연장 성능이 추가 되였습니다.

장비 운행 시 간격을 최소화 하기 위해 통상적으로 예압있는 볼스크류를 사용하게 됩니다. 볼스크류 조립이 적합하지 않을 경우에는 고정밀도 및 수명연장 효과를 볼 수 없습니다. 볼스크류 사용시 발생되는 문제점 및 원인을 찾을 있도록 내용을 논술하오니 참고하여 주시기 바랍니다.

볼스크류 조립시 발생되는 문제의 원인 및 예방

아래 3종류 볼스크류에 대하여 발생되는 문제점의 원인 및 방지

작동순조롭지않음

스크류와 너트 처리

- 순환시스템 위치가공이 적합하지 않음.
- 스크류 혹은 너트 볼 홈 연마 조도 양호하지 않음.
- 스크류 혹은 너트 볼 중심도 공차범위 초과.
- 스크류 혹은 너트의 리드 오차 혹은 중심도 공차 범위 초과.

운행길이 초과

운행길이 초과 발생원인은 설정, 극한 ON/OFF 및 충격으로 인하여 발생하게 됩니다.

운행길이 초과는 볼 순환이 파손되여 볼이 정상적으로 운행이 되지 않게 됩니다.

열악한 운행조건에서 스크류 및 너트 홈 표면에서 이탈 현상이 발생하게 됩니다.

재조립이 필요할 경우 볼스크류는 꼭 제조상의 재 검사를 받고 다시 사용하셔야 합니다.

편심

볼스크류 조립 시 양쪽 베어링 지지대 및 너트 세 포인트 동심을 이루어졌을때 최상의 조립 상태라고 볼수 있습니다. 만약 동심이 아닐 경우 너트 및 베어링은 하중을 받게되여 편심량이 증가하게 되며 스크류는 휘어지게 됩니다. 편심으로 인해 스크류는 휘어짐 현상이 심해지고 마모로 인해 스크류 정도는 급격히 떨어지게 됩니다. 볼스크류는 모터와도 동심 상태를 유지하여야 합니다.

이물질이 볼 홈에 유입

볼스크류에 스크레이퍼 미 장착 혹은 파손되였을 때 장비 운행 가공시에 찌거기 혹은 먼지가 볼홈에 유입되여 운행 방지 및 정도, 수명단축현상이 나타나게 됩니다.

순환시스템 파손

조립시 심한 충격을 받았을 경우, 볼홈에 손상을 입게 되여 볼순환시스템에서 운행이 손조롭지 않게 됩니다.

너트 조립이 적합하지 않음.

너트 조립시 경사 혹은 편심일 경우, 편심부하로 인해 모터 운행 전류값이 불안정하게 됩니다.

운반 시 볼스크류 파손.

- 조립과정에서 너트가 스크류에서 탈착하는 것을 피해야 합니다.너트 탈착되였을때 볼이 떨어지게 되며 예압변동 및 순환 시스템, 스크레이퍼 파손이 될 우려가 높습니다.
- 볼스크류 마찰은 아주 미세하지만, 운반과정 중에서 수직방치 될 경우 너트와 스크류는 자체 하중에 의해 탈착으로 파손됩니다.이러한 경우에는 반드시 제조사의 재검이 실시를 하여 추가 파손을 방지 하여야 합니다.

간격 큼

무예안 혹은 예안 부족

예압이 없는 볼스크류는 수직방치시 너트 자체무게로 인해 운행하여 내려오게 됩니다.예압이 없는 볼스크류는 충분한 간격이 존재함으로써 작은 작업대에 사용되며 정밀도 요구는 없습니다.PMI에서는 고객 사용 작업대에 따라 예압량을 조정하여 출하를 함으로써 고객님께서 볼스크류를 주문시에 정확한 적용장비 정보를 제공하여 주시기 바랍니다.

베어링선택 부적합 혹은 조립 부적합

- 볼스크류 축방향하중을 받을때 깊은 홈 베어링은 예압방식으로 자체간격을 소화할 수 없으므로 베어링 조립시 고정량의 축방향 간격이 발생함으로 깊은 홈 베어링은 정확하지 않습니다.
- 너트 고정 시 스프링씰 혹은 고정씰로 베어링 고정 시킴으로 운행시 느슨해짐을 막을 수 있습니다

- 베어링면과 끝단고정에 너트 V형축심의 수직도가 아닐 경우, 혹은 너트 면과 평행도가 아닐 경우 베어링 경사가 발생하게 됩니다. 따라서 스크류 끝단 고정 너트 V형과 베어링면은 반드시 동시 가공해야만 수직도를 보장 할 수 있습니다. 가능하다면 연마방식으로 가공하는게 더 좋습니다.
- 베어링조립시 볼스크류와 상호부착이 확실하지 않을 경우, 베어링 하중을 받으면서 간격이 발생하게 됩니다.이런 현상은 보통 스크류 끝단이 많이 길던가 혹은 많이 짧을 경우에 발생되며 간격씰을 사용하여 이 현상을 해결할 수 있습니다.

지지측의 표면 평형도 혹은 평면도

조합부품은 연마 혹은 깍는 방법으로도 평행도 혹은 평면도가 공자범위를 초과하여 반복정 밀도는 떨어지게 되여 한대의 장비는 지지대와 기계본체 간에 얇은 씰을 조립하여 정도를 맞 추게 됩니다.

너트대와 베어링강성 양호하지 않음

너트대와 베어링 강성이 보족할 경우 부품자체 중량, 기계하중 혹은 운행 시 발생되는 관성으로 인해 스프링 변형, 경사지게 됩니다.

너트대와 베어링 조립 부적합.

- 진동 혹은 스프링씰이 너트에서 고정이 느슨하게 됩니다.
- 고정나사가 끝면, 홀 깊이 얕으면 볼트와 접촉하는 부속품이 밀접히 접촉되지 않아 고정효과를 얻지 못합니다.
- •고정나사가 짧을 경우, 나사의 고정효과를 얻지 못합니다.
- 진동 혹은 고정키를 사용하지 않으면 조합부속품이 느슨하게 됩니다.

모터와 볼스크류 조합 부적합

- 베어링 조합시 고정안됨 혹은 강성이 좋지 않을 경우 스크류와 모터간 운행이 순조롭지 않습니다.
- 키의 느슨함 혹은 키 홈과 스크류간 부적합하게 조합이 되였을 경우 부속품 사이에 간격이 발생하게 됩니다.
- 적합하지 않은 기어구동 혹은 구동구조가 강체가 아닐 경우 벨트를 사용하여 구동시 미끄러짐을 방지해야 합니다.

파손

볼 파손

볼은 통상적으로 재질은 烙钼钢, 한개의 볼 직경3.175mm (1/8)의 볼 파손될 경우 1400kg(3080파운드)~1600kg(3520파운드)를 받게 됩니다.윤활이 없을 경우 볼스크류 운행시 온동상승이 명확하게 나타나며 강구 파손하여 너트 혹은 스크류 홈 파손이 발생하게 됩니다. 따라서 설계과정에서 반드시 윤활유 보충을 해야 합니다.

순환시스템 파손

너트길이 초과 혹은 순환 시스템에 충격으로 인해 순환 시스템 파손되여 볼순환 경로를 방해 하여 볼은 구동이 아니라 미끄러지는 현상이 나타나게 되여 순환 시스템이 파손됩니다. 예방 방법은 스크류 양쪽에 충경방지기를 추가 조립을 하는 것입니다.

볼스크류 끝단 파손

- 설계부적합: 스크류 끝단에 예각설계를 피해야 하며 극소부위 하중을 줄입니다.
- 스크류 끝단 고정 휘어짐: 베어링과 고정v형 나사 축중심의 직각도 불안정 혹은 너트 와의 평행도가 불안정 시 너트 끝단의 휘어짐 혹은 단열현상이 나타납니다. 따라서 고정전후 스 크류 끝단 흔들림 량은 0.01mm(0.0004)를 초과해서는 않됩니다.
- 직경방향력과 반복응력 :스크류 조립시 편심은 교변응력변형으로 볼스크류의 수명을 단축시킵니다.
- 스크류끝단 사이즈의 설계: 스크류 면적차이와 많은 차이가 나지 않도록 해야 합니다.

온도가 볼스크류에 대한 영향

볼스크류운행시 온도상승은 고속고정밀을 요구하는 장비에 정도에 영향을 미치게 됩니다.

볼스크류 온도상승의 원인은 아래와 같습니다. (1)예압 (2)윤활 (3) Preloading torque

• 예압의 영향

너트 예압량으로 기존 장비의 위치 이탈 방지를 할 수 있습니다.예압량은 너트로 인해 스크류 마찰을 증가하게 되며 스크류운동시 온도 상승하게 됩니다. *PMI* 에서는 예압력은 축방향하 중의 1/3을 초과하지 않고 예압력은 동정격하중이 10%초과하지 않는 조건에서 최상의 수명과 최저의 온도상승 효과를 얻을 수 있습니다.

• Preloading torque 의 영향

스크류축은 온도에 의해 길어지며 변형이 나타나게 되며 위치정도가 악화하게 됩니다.열

장량은 공식으로 값을 구할수 있으며 열장량은 Preloading torque으로 보충이 됩니다. Preloading torque으로 보충하는 목표값은 도면에 표시되는 T값입니다. 너무 큰 Preloading torque는 지지베어링을 파손시킬 수 있습니다. 스크류 직경이 클수록 더 큰 Preloading torque 가 필요하므로 이에 지지베어링은 과열로 인해 파손됩니다. PMI에서 5° C온도 상승으로 보충 T값을 기준으로 합니다.(한개 스크류 1000MM으로 가정하였을 때, -0.02~-0.03mm)

• 윤활의 영향

윤활제는 볼스크류 온도 상승에 직접적인 영향을 받습니다. PMI 볼스크류는 오일 혹은 유지 중 한가지로 윤활제로 사용됩니다. 오일점도는 작업속도, 작업온도 및 하중에 따라 선택해야 합니다. 작업상황이 고속저하중 일 경우에는 저점도 오일을 권장합니다. 고속 운송시 윤활유 40℃ 일 경우, 점도지수 범위는 90CST. 고속고하중 운송시 , 강제 냉각으로 온도를 내린 후 중 공너트 혹은 냉각 너트를 통해 오일로 냉각효과를 보게 하는 것을 권장드립니다